Login

Ice Hogs
GP: 29 | W: 12 | L: 15 | OTL: 2 | P: 26
GF: 100 | GA: 106 | PP%: 16.25% | PK%: 79.34%
GM : Marc Brideau | Morale : 50 | Team Overall : 63
Next Games #437 vs Penguins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Ice Hogs
12-15-2, 26pts
4
FINAL
5 Sound Tigers
14-13-2, 30pts
Team Stats
L4StreakL1
6-7-1Home Record6-9-0
6-8-1Away Record8-4-2
2-7-1Last 10 Games3-6-1
3.45Goals Per Game2.83
3.66Goals Against Per Game2.86
16.25%Power Play Percentage24.73%
79.34%Penalty Kill Percentage80.83%
Ice Hogs
12-15-2, 26pts
2
FINAL
5 Griffins
19-9-1, 39pts
Team Stats
L4StreakW1
6-7-1Home Record11-3-1
6-8-1Away Record8-6-0
2-7-1Last 10 Games7-2-1
3.45Goals Per Game3.48
3.66Goals Against Per Game2.72
16.25%Power Play Percentage22.32%
79.34%Penalty Kill Percentage82.67%
Penguins
14-13-2, 30pts
2022-12-08
Ice Hogs
12-15-2, 26pts
Team Stats
L2StreakL4
10-3-1Home Record6-7-1
4-10-1Away Record6-8-1
5-5-0Last 10 Games2-7-1
2.83Goals Per Game3.45
3.31Goals Against Per Game3.66
17.58%Power Play Percentage16.25%
78.26%Penalty Kill Percentage79.34%
Ice Hogs
12-15-2, 26pts
2022-12-10
Aces
18-7-3, 39pts
Team Stats
L4StreakL2
6-7-1Home Record9-5-1
6-8-1Away Record9-2-2
2-7-1Last 10 Games4-4-2
3.45Goals Per Game3.68
3.66Goals Against Per Game3.29
16.25%Power Play Percentage27.62%
79.34%Penalty Kill Percentage79.79%
Admirals
16-12-1, 33pts
2022-12-12
Ice Hogs
12-15-2, 26pts
Team Stats
L1StreakL4
9-4-1Home Record6-7-1
7-8-0Away Record6-8-1
3-6-1Last 10 Games2-7-1
3.76Goals Per Game3.45
3.62Goals Against Per Game3.66
19.83%Power Play Percentage16.25%
75.73%Penalty Kill Percentage79.34%
Team Leaders
Jesper FrodenGoals
Jesper Froden
14
Joe VelenoAssists
Joe Veleno
20
Joe VelenoPoints
Joe Veleno
32
Jesper FrodenPlus/Minus
Jesper Froden
8
Pheonix CopleyWins
Pheonix Copley
12
Ukko-Pekka LuukkonenSave Percentage
Ukko-Pekka Luukkonen
0.962

Team Stats
Goals For
100
3.45 GFG
Shots For
984
33.93 Avg
Power Play Percentage
16.3%
13 GF
Offensive Zone Start
39.1%
Goals Against
106
3.66 GAA
Shots Against
1005
34.66 Avg
Penalty Kill Percentage
79.3%
25 GA
Defensive Zone Start
41.7%
Team Info

General ManagerMarc Brideau
CoachJim Montgomery
DivisionCentral
ConferenceAmerican
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,980
Season Tickets0


Roster Info

Pro Team21
Farm Team20
Contract Limit41 / 250
Prospects32


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Joe Veleno (R)X100.007638896779839566826465686762640506602211,200,000$
2Matt LuffX100.007134896780797665616467626366680506502531,000,000$
3Anton BlidhXX100.00883576657775736457636270646667050650272800,000$
4Jesper FrodenX100.00623782686689806763616665696870050650282750,000$
5Scott Reedy (R)X100.00683890678178846370626764656364050650232900,000$
6Brett Leason (R)X100.007741876193758862576061646263650506402321,000,000$
7Hudson FaschingX100.00743994628481856165625862596769050640272800,000$
8Lias Andersson (R)XXX100.006035826574787563725860576264650506202411,000,000$
9Givani Smith (R)XX100.00848360568374785755585956616365050610242950,000$
10Daniel Walcott (R)X100.00834263547277795561565758546870050600281750,000$
11Nick Jones (R)XX100.00524483566887885461535552566764050580261750,000$
12Anthony BitettoX100.00723977618179766230666163537274050640321750,000$
13Ben Gleason (R)X100.00643877627376946130655655486466050620242800,000$
14Sean Day (R)X100.00773982578776855930615763486466050620241900,000$
15Brian LashoffX100.00774283578665885630555458467277050610321750,000$
16Brandon DavidsonX100.00824370598281655630555268467173050610311750,000$
17Brayden Pachal (R)X100.00673878567974835830575661526365050600233800,000$
18Joe HickettsX100.00553782596477885830625654486668050600262750,000$
Scratches
TEAM AVERAGE100.0072418061787882605160596157666805063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Pheonix Copley100.0075747586747375747375747084050660302875,000$
2Ukko-Pekka Luukkonen (R)100.0074838293737274737274736369050650231900,000$
Scratches
1Jack LaFontaine (R)100.0070717081696870696870696471050630241800,000$
TEAM AVERAGE100.007376768772717372717372667505065
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jim Montgomery66727570797371CAN531250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joe VelenoIce Hogs (Chi)C2912203274029901113110210.81%860820.97055227501161063055.58%94100001.0512000123
2Jesper FrodenIce Hogs (Chi)RW291414288601056137398010.22%451817.8704421650001143033.33%4200001.0801000321
3Anton BlidhIce Hogs (Chi)LW/RW29131225-324012054125259510.40%1970424.29224187400011090049.28%6900000.7102000220
4Scott ReedyIce Hogs (Chi)C29121325740876102217311.76%953718.5511217491123611052.42%68100000.9311000220
5Brett LeasonIce Hogs (Chi)RW2914822-260203679315117.72%838913.4210112000001040.00%3000001.1301000202
6Lias AnderssonIce Hogs (Chi)C/LW/RW296162222015456519429.23%545315.650111181012370047.32%35500000.9701000031
7Matt LuffIce Hogs (Chi)RW29111021060124798287111.22%1051217.664261374000002040.00%4500000.8202000000
8Ben GleasonIce Hogs (Chi)D292161821604331329316.25%3764322.192352470000099000.00%000000.5600000201
9Brandon DavidsonIce Hogs (Chi)D291151643408624175205.88%4048116.61112518011054000.00%000000.6600000002
10Sean DayIce Hogs (Chi)D2931114-424071303311349.09%4961321.161231567011188000.00%000000.4600000010
11Anthony BitettoIce Hogs (Chi)D22291162807834338306.06%4855125.081121554000066010.00%000000.4000000000
12Brayden PachalIce Hogs (Chi)D29191001603014165106.25%2641814.4300002000014100.00%000000.4800000000
13Brian LashoffIce Hogs (Chi)D2908861754415255150.00%3058720.260001368011187000.00%000000.2700001000
14Daniel WalcottIce Hogs (Chi)LW29347-21806222329229.38%534511.9100000000010060.00%2500000.4100000000
15Givani SmithIce Hogs (Chi)LW/RW2925766610125163718335.41%950417.400009471013370040.00%3500000.2800200001
16Hudson FaschingIce Hogs (Chi)RW293361007122751611.11%41314.5200010000001010.00%1000000.9200000001
17Joe HickettsIce Hogs (Chi)D290442401254040.00%71926.650000000003000.00%000000.4100000000
18Nick JonesIce Hogs (Chi)C/RW2911210001191711.11%01254.3400000000000044.37%14200000.3200000000
Team Total or Average515100178278412751577261898227073610.18%318832016.161322351756903581878112151.33%237500000.67210201121212
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleyIce Hogs (Chi)29121520.8903.77157601998990110.60010290112
2Ukko-Pekka LuukkonenIce Hogs (Chi)50000.9621.411700041050000.0000029000
Team Total or Average34121520.8973.5417460110310040110.600102929112


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anthony BitettoIce Hogs (Chi)D321990-07-15No210 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Anton BlidhIce Hogs (Chi)LW/RW271995-03-14No201 Lbs6 ft0NoNoNo2Pro & Farm800,000$0$0$No800,000$NHL Link
Ben GleasonIce Hogs (Chi)D241998-03-25Yes185 Lbs6 ft1NoNoNo2Pro & Farm800,000$0$0$No800,000$NHL Link
Brandon DavidsonIce Hogs (Chi)D311991-08-21No208 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Brayden PachalIce Hogs (Chi)D231999-08-23Yes200 Lbs6 ft1NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$NHL Link
Brett LeasonIce Hogs (Chi)RW231999-04-30Yes218 Lbs6 ft5NoNoNo2Pro & Farm1,000,000$0$0$No1,000,000$NHL Link
Brian LashoffIce Hogs (Chi)D321990-07-16No219 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Daniel WalcottIce Hogs (Chi)LW281994-02-19Yes175 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Givani SmithIce Hogs (Chi)LW/RW241998-02-27Yes204 Lbs6 ft2NoNoNo2Pro & Farm950,000$0$0$No950,000$NHL Link
Hudson FaschingIce Hogs (Chi)RW271995-07-28No204 Lbs6 ft3NoNoNo2Pro & Farm800,000$0$0$No800,000$NHL Link
Jack LaFontaineIce Hogs (Chi)G241998-01-06Yes204 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$NoNHL Link
Jesper FrodenIce Hogs (Chi)RW281994-09-21No179 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Joe HickettsIce Hogs (Chi)D261996-05-04No180 Lbs5 ft8NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Joe VelenoIce Hogs (Chi)C222000-01-13Yes198 Lbs6 ft1NoNoNo1Pro & Farm1,200,000$0$0$NoNHL Link
Lias AnderssonIce Hogs (Chi)C/LW/RW241998-10-13Yes204 Lbs6 ft0NoNoNo1Pro & Farm1,000,000$0$0$NoNHL Link
Matt LuffIce Hogs (Chi)RW251997-05-05No190 Lbs6 ft2NoNoNo3Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$NHL Link
Nick JonesIce Hogs (Chi)C/RW261996-06-02Yes176 Lbs5 ft10NoNoNo1Pro & Farm750,000$0$0$No
Pheonix CopleyIce Hogs (Chi)G301992-01-18No200 Lbs6 ft4NoNoNo2Pro & Farm875,000$0$0$No875,000$NHL Link
Scott ReedyIce Hogs (Chi)C231999-04-09Yes205 Lbs6 ft2NoNoNo2Pro & Farm900,000$0$0$No900,000$NHL Link
Sean DayIce Hogs (Chi)D241998-01-09Yes225 Lbs6 ft3NoNoNo1Pro & Farm900,000$0$0$NoNHL Link
Ukko-Pekka LuukkonenIce Hogs (Chi)G231999-03-09Yes220 Lbs6 ft4NoNoNo1Pro & Farm900,000$0$0$NoNHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2126.00200 Lbs6 ft11.62855,952$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhJoe VelenoMatt Luff40122
2Givani SmithScott ReedyJesper Froden30122
3Daniel WalcottLias AnderssonBrett Leason20122
4Anton BlidhNick JonesHudson Fasching10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason40122
2Sean DayBrian Lashoff30122
3Brandon DavidsonBrayden Pachal20122
4Joe HickettsAnthony Bitetto10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhJoe VelenoMatt Luff60122
2Givani SmithScott ReedyJesper Froden40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason60122
2Sean DayBrian Lashoff40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joe VelenoAnton Blidh60122
2Scott ReedyGivani Smith40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason60122
2Sean DayBrian Lashoff40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joe Veleno60122Anthony BitettoBen Gleason60122
2Scott Reedy40122Sean DayBrian Lashoff40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joe VelenoAnton Blidh60122
2Scott ReedyGivani Smith40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason60122
2Sean DayBrian Lashoff40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anton BlidhJoe VelenoMatt LuffAnthony BitettoBen Gleason
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anton BlidhJoe VelenoMatt LuffAnthony BitettoBen Gleason
Extra Forwards
Normal PowerPlayPenalty Kill
Scott Reedy, Brett Leason, Hudson FaschingScott Reedy, Brett LeasonScott Reedy
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Davidson, Brayden Pachal, Joe HickettsBrandon DavidsonBrandon Davidson, Brayden Pachal
Penalty Shots
Joe Veleno, Anton Blidh, Matt Luff, Jesper Froden, Scott Reedy
Goalie
#1 : Pheonix Copley, #2 : Ukko-Pekka Luukkonen
Custom OT Lines Forwards
Joe Veleno, Anton Blidh, Matt Luff, Jesper Froden, Scott Reedy, Brett Leason, Brett Leason, Hudson Fasching, Lias Andersson, Givani Smith, Daniel Walcott
Custom OT Lines Defensemen
Anthony Bitetto, Ben Gleason, Sean Day, Brian Lashoff, Brandon Davidson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces211000006601010000024-21100000042220.500610160048223025834533230413572720525120.00%10280.00%1508101949.85%528108648.62%24750049.40%667457716215366178
2Admirals514000001920-12020000057-2312000001413120.20019355400482230217534533230413168605413514321.43%25580.00%1508101949.85%528108648.62%24750049.40%667457716215366178
3Barracuda21100000642110000004131010000023-120.5006111700482230286345332304135922164911218.18%8187.50%0508101949.85%528108648.62%24750049.40%667457716215366178
4Griffins505000001024-142020000058-330300000516-1100.000101828104822302168345332304131905551128900.00%20670.00%1508101949.85%528108648.62%24750049.40%667457716215366178
5Heat1000000145-11000000145-10000000000010.500461000482230227345332304134212830100.00%4175.00%0508101949.85%528108648.62%24750049.40%667457716215366178
6Marlies31200000510-531200000510-50000000000020.33359140048223028034533230413893222921200.00%11281.82%0508101949.85%528108648.62%24750049.40%667457716215366178
7Moose3210000089-1110000003212110000057-240.66781523004822302119345332304131153728741119.09%13284.62%0508101949.85%528108648.62%24750049.40%667457716215366178
8Sound Tigers1010000045-1000000000001010000045-100.000481200482230229345332304134410822200.00%4250.00%0508101949.85%528108648.62%24750049.40%667457716215366178
9Wheat Kings3300000017981100000053222000000126661.00017314800482230210134533230413962723846233.33%80100.00%0508101949.85%528108648.62%24750049.40%667457716215366178
10Wild220000001147110000006421100000050541.0001119300148223026134533230413681820522150.00%9188.89%0508101949.85%528108648.62%24750049.40%667457716215366178
11Wolves2100000110100110000005411000000156-130.7501017270048223028034533230413771925547342.86%9366.67%0508101949.85%528108648.62%24750049.40%667457716215366178
Total29121500002100106-61467000014448-41568000015658-2260.448100179279114822302984345332304131005319275772801316.25%1212579.34%3508101949.85%528108648.62%24750049.40%667457716215366178
_Since Last GM Reset29121500002100106-61467000014448-41568000015658-2260.448100179279114822302984345332304131005319275772801316.25%1212579.34%3508101949.85%528108648.62%24750049.40%667457716215366178
_Vs Conference2812140000296101-51467000014448-41467000015253-1260.4649617126711482230295534533230413961309267750781316.67%1172380.34%3508101949.85%528108648.62%24750049.40%667457716215366178
_Vs Division12101100001574314545000002118376600001362511210.875571021590148223024173453323041340912412232529931.03%51982.35%1508101949.85%528108648.62%24750049.40%667457716215366178

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2926L4100179279984100531927577211
All Games
GPWLOTWOTL SOWSOLGFGA
2912150002100106
Home Games
GPWLOTWOTL SOWSOLGFGA
146700014448
Visitor Games
GPWLOTWOTL SOWSOLGFGA
156800015658
Last 10 Games
WLOTWOTL SOWSOL
270001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
801316.25%1212579.34%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
345332304134822302
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
508101949.85%528108648.62%24750049.40%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
667457716215366178


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-103Ice Hogs2Moose5ALBoxScore
3 - 2022-10-1221Aces4Ice Hogs2BLBoxScore
6 - 2022-10-1537Marlies2Ice Hogs3BWBoxScore
8 - 2022-10-1761Ice Hogs5Wild0AWBoxScore
9 - 2022-10-1865Ice Hogs4Aces2AWBoxScore
12 - 2022-10-2184Griffins4Ice Hogs2BLBoxScore
14 - 2022-10-2398Moose2Ice Hogs3BWBoxScore
16 - 2022-10-25120Ice Hogs5Wheat Kings3AWBoxScore
17 - 2022-10-26130Ice Hogs8Admirals4AWBoxScore
19 - 2022-10-28140Wolves4Ice Hogs5BWBoxScore
21 - 2022-10-30158Wheat Kings3Ice Hogs5BWBoxScore
23 - 2022-11-01170Ice Hogs3Griffins5ALBoxScore
26 - 2022-11-04192Admirals3Ice Hogs2BLBoxScore
28 - 2022-11-06211Wild4Ice Hogs6BWBoxScore
30 - 2022-11-08221Ice Hogs5Wolves6ALXXBoxScore
32 - 2022-11-10242Marlies3Ice Hogs1BLBoxScore
34 - 2022-11-12251Ice Hogs0Griffins6ALBoxScore
35 - 2022-11-13263Ice Hogs7Wheat Kings3AWBoxScore
38 - 2022-11-16279Admirals4Ice Hogs3BLBoxScore
39 - 2022-11-17290Ice Hogs3Admirals4ALBoxScore
41 - 2022-11-19305Heat5Ice Hogs4BLXXBoxScore
44 - 2022-11-22323Ice Hogs3Moose2AWBoxScore
45 - 2022-11-23337Ice Hogs3Admirals5ALBoxScore
47 - 2022-11-25348Marlies5Ice Hogs1BLBoxScore
50 - 2022-11-28367Barracuda1Ice Hogs4BWBoxScore
52 - 2022-11-30382Ice Hogs2Barracuda3ALBoxScore
54 - 2022-12-02397Griffins4Ice Hogs3BLBoxScore
56 - 2022-12-04414Ice Hogs4Sound Tigers5ALBoxScore
58 - 2022-12-06428Ice Hogs2Griffins5ALBoxScore
60 - 2022-12-08437Penguins-Ice Hogs-
62 - 2022-12-10454Ice Hogs-Aces-
64 - 2022-12-12471Admirals-Ice Hogs-
66 - 2022-12-14479Ice Hogs-Monsters-
68 - 2022-12-16494Heat-Ice Hogs-
71 - 2022-12-19517Ice Hogs-Aces-
73 - 2022-12-21530Swamp Rabbits-Ice Hogs-
77 - 2022-12-25554Moose-Ice Hogs-
80 - 2022-12-28574Aces-Ice Hogs-
83 - 2022-12-31601Ice Hogs-Crunch-
84 - 2023-01-01608Americans-Ice Hogs-
87 - 2023-01-04625Ice Hogs-Wolfpack-
89 - 2023-01-06638Devils-Ice Hogs-
91 - 2023-01-08654Ice Hogs-Phantoms-
93 - 2023-01-10666Wheat Kings-Ice Hogs-
96 - 2023-01-13683Ice Hogs-Bears-
97 - 2023-01-14697Moose-Ice Hogs-
100 - 2023-01-17715Ice Hogs-Oil Kings-
102 - 2023-01-19728Wild-Ice Hogs-
104 - 2023-01-21745Ice Hogs-Wolves-
106 - 2023-01-23756Reign-Ice Hogs-
109 - 2023-01-26777Ice Hogs-Bears-
110 - 2023-01-27789Wolves-Ice Hogs-
113 - 2023-01-30812Marlies-Ice Hogs-
115 - 2023-02-01822Ice Hogs-Marlies-
118 - 2023-02-04844Wild-Ice Hogs-
120 - 2023-02-06861Ice Hogs-Rocket-
122 - 2023-02-08875Rampage-Ice Hogs-
126 - 2023-02-12899Ice Hogs-Wolves-
127 - 2023-02-13906Reign-Ice Hogs-
130 - 2023-02-16932Wheat Kings-Ice Hogs-
132 - 2023-02-18947Ice Hogs-Rampage-
135 - 2023-02-21961Ice Hogs-Heat-
136 - 2023-02-22967Falcons-Ice Hogs-
139 - 2023-02-25990Ice Hogs-Moose-
140 - 2023-02-26994Griffins-Ice Hogs-
143 - 2023-03-011021Barracuda-Ice Hogs-
144 - 2023-03-021030Ice Hogs-Rampage-
147 - 2023-03-051052Monsters-Ice Hogs-
148 - 2023-03-061056Ice Hogs-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2023-03-081079Ice Hogs-Gulls-
151 - 2023-03-091085Bruins-Ice Hogs-
155 - 2023-03-131109Ice Hogs-Gulls-
156 - 2023-03-141115Wolves-Ice Hogs-
160 - 2023-03-181143Bruins-Ice Hogs-
161 - 2023-03-191150Ice Hogs-Barracuda-
163 - 2023-03-211164Ice Hogs-Monsters-
165 - 2023-03-231175Aces-Ice Hogs-
167 - 2023-03-251187Ice Hogs-Reign-
169 - 2023-03-271201Ice Hogs-Thunderbirds-
170 - 2023-03-281206Sound Tigers-Ice Hogs-
172 - 2023-03-301218Ice Hogs-Wild-
175 - 2023-04-021235Gulls-Ice Hogs-
176 - 2023-04-031240Ice Hogs-Wheat Kings-
179 - 2023-04-061257Ice Hogs-Wild-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price200100
Attendance18,4699,248
Attendance PCT65.96%66.06%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
28 1980 - 65.99% 412,375$5,773,250$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
671,125$ 1,797,500$ 1,797,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,986$ 589,174$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
11,546,500$ 121 11,375$ 1,376,375$




Ice Hogs Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Ice Hogs Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Ice Hogs Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Ice Hogs Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Ice Hogs Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA