Login

Marlies
GP: 47 | W: 28 | L: 13 | OTL: 6 | P: 62
GF: 135 | GA: 116 | PP%: 19.07% | PK%: 85.10%
GM : Philippe Morin | Morale : 50 | Team Overall : 64
Next Games #728 vs Ice Hogs
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Americans
23-21-4, 50pts
3
FINAL
4 Marlies
28-13-6, 62pts
Team Stats
L3StreakL1
13-10-1Home Record13-8-3
10-11-3Home Record15-5-3
2-6-2Last 10 Games7-3-0
3.00Goals Per Game2.87
2.92Goals Against Per Game2.47
18.48%Power Play Percentage19.07%
78.95%Penalty Kill Percentage85.10%
Marlies
28-13-6, 62pts
1
FINAL
2 Griffins
29-17-4, 62pts
Team Stats
L1StreakW1
13-8-3Home Record15-7-2
15-5-3Home Record14-10-2
7-3-0Last 10 Games7-2-1
2.87Goals Per Game3.20
2.47Goals Against Per Game3.02
19.07%Power Play Percentage17.02%
85.10%Penalty Kill Percentage82.56%
Marlies
28-13-6, 62pts
Day 139
Ice Hogs
23-19-5, 51pts
Team Stats
L1StreakL1
13-8-3Home Record14-7-3
15-5-3Away Record9-12-2
7-3-0Last 10 Games4-5-1
2.87Goals Per Game3.60
2.47Goals Against Per Game3.60
19.07%Power Play Percentage21.98%
85.10%Penalty Kill Percentage79.68%
Aces
22-23-7, 51pts
Day 140
Marlies
28-13-6, 62pts
Team Stats
W1StreakL1
11-6-6Home Record13-8-3
11-17-1Away Record15-5-3
5-3-2Last 10 Games7-3-0
3.31Goals Per Game2.87
3.58Goals Against Per Game2.87
23.94%Power Play Percentage19.07%
81.91%Penalty Kill Percentage85.10%
Heat
32-16-0, 64pts
Day 144
Marlies
28-13-6, 62pts
Team Stats
W1StreakL1
17-7-0Home Record13-8-3
15-9-0Away Record15-5-3
7-3-0Last 10 Games7-3-0
4.00Goals Per Game2.87
3.13Goals Against Per Game2.87
24.11%Power Play Percentage19.07%
76.92%Penalty Kill Percentage85.10%
Team Leaders
Adam ErneGoals
Adam Erne
17
Joel HanleyAssists
Joel Hanley
36
Joel HanleyPoints
Joel Hanley
49
Adam ErnePlus/Minus
Adam Erne
15
Wins
Magnus Hellberg
28
Save Percentage
Magnus Hellberg
0.908

Team Stats
Goals For
135
2.87 GFG
Shots For
1275
27.13 Avg
Power Play Percentage
19.1%
37 GF
Offensive Zone Start
39.9%
Goals Against
116
2.47 GAA
Shots Against
1218
25.91 Avg
Penalty Kill Percentage
85.1%%
31 GA
Defensive Zone Start
41.1%
Team Info

General ManagerPhilippe Morin
CoachDavid Quinn
DivisionPacific
ConferenceAmerican
CaptainVinnie Hinostroza
Assistant #1Chris Wagner
Assistant #2


Arena Info

Capacity3,000
Attendance2,152
Season Tickets0


Roster Info

Pro Team25
Farm Team19
Contract Limit44 / 250
Prospects44


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Evgenii DadonovXX100.006640877174718967537765695869590627003411,500,000$
2Adam ErneXX100.007464856383668560617062726065590476702841,000,000$
3Sam CarrickXXX100.00798479607961755975686270545958046660321850,000$
4A.J. GreerX100.007173756676596960546761735559580506502721,000,000$
5Michael Eyssimont (R)XX100.00726569696864686156696169565858050650271850,000$
6Max JonesX100.007364766184667458556861695460580506502611,295,000$
7Vinnie Hinostroza (C)XX100.00624482676865686258716166576659050650291900,000$
8Sheldon DriesX100.006966806270636861736765685460580506502911,000,000$
9Jack Studnicka (R)X100.00694578677060665870666064565757050630251900,000$
10Kevin RooneyX100.00635377617064715769615866546559047620302750,000$
11Chris Wagner (A)XX100.00565664636466655970566060547263050610321900,000$
12Mason MorelliXX100.00565663616568666055595964546358050610282750,000$
13Josh BrownX100.00757782658372805640685983546158027680302900,000$
14Joel HanleyX100.00686085647663685540695685545958050660321750,000$
15Calle RosenX100.00614582666969656140696374546058050660302850,000$
16Chris WidemanX100.00646573657268745940725772546359050650341900,000$
17Scott HarringtonX100.006245806575706357406659735465590506503011,000,000$
18Jordan GrossX100.00565369646467626040625863586359050620281750,000$
Scratches
1Jan Jenik (R)X100.00575463596261605860585760555654050590231900,000$
2Sampo Ranta (R)X100.00565467596564625755565759545654050580231900,000$
3Pontus Andreasson (R)X100.005255635556636155525356535158530505502511,500,000$
4Andrej SustrX100.00575270567466625740595668547263050610331750,000$
TEAM AVERAGE100.0064587563716569595465606855625804964
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Magnus Hellberg100.0070616192687971657164725856050700322950,000$
2Dustin Tokarski100.0065666767726270656766687262050670341800,000$
Scratches
1Matthew Murray (R)100.00596060636461636055565757520506002611,250,000$
TEAM AVERAGE100.006562637468676863646266625705066
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
David Quinn83778183858150USA561250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joel HanleyMarlies (Tor)D4713364913380946779276116.46%70106622.7041620441561231148320%000000.9200000424
2Sam CarrickMarlies (Tor)C/LW/RW4711243514591512010681327513.58%390119.194913191530110842255.26%109300000.7824011453
3Sheldon DriesMarlies (Tor)C47132134-22159112714339979.09%1398921.053710271460001553153.29%95700010.6900100411
4Adam ErneMarlies (Tor)LW/RW47171633151407159112388015.18%1396520.535383715701121244046.67%7500100.6812000261
5Calle RosenMarlies (Tor)D47923326240656884245510.71%43106622.697815461570002147210%000000.6000000502
6A.J. GreerMarlies (Tor)LW4710182811200695711420778.77%989219.0038112415001111103138.98%5900000.6312000223
7Jack StudnickaMarlies (Tor)C4710152512005610586298111.63%874715.890002700011112150.37%67300000.6700000022
8Vinnie HinostrozaMarlies (Tor)C/RW471111221100357492197411.96%376916.38235181030001694141.75%10300000.5700000200
9Max JonesMarlies (Tor)LW4791120-137587469227709.78%265313.9021320112000001057.14%4200000.6100001032
10Scott HarringtonMarlies (Tor)D475141943407753538239.43%4291719.5311218740111151200%000000.4100000111
11Michael EyssimontMarlies (Tor)C/RW479918-214070419525789.47%554711.65224956000001037.61%11700000.6623000213
12Jordan GrossMarlies (Tor)D4721517846058423710245.41%3270915.10000610000018000%000000.4800000003
13Chris WidemanMarlies (Tor)D4751116-932095605212339.62%4598921.05358301500001120210%000000.3200000010
14Evgenii DadonovMarlies (Tor)LW/RW183101308021325911205.08%333618.6814521630000100058.82%3400000.7722000001
15Josh BrownMarlies (Tor)D2731013-853574504117247.32%3057121.182681882000085010%000000.4500001021
16Chris WagnerMarlies (Tor)C/RW474812318036914923618.16%674515.872021010610131050054.89%70500000.3200000001
17Andrej SustrMarlies (Tor)D2028109604012134715.38%1932716.3601108000028000%000000.6100000020
18Kevin RooneyMarlies (Tor)C40538114030664564011.11%747111.80000001012991056.51%53800000.3400000000
19Mason MorelliMarlies (Tor)C/LW47527-260282850143810.00%54589.75000130001200051.52%3300000.3100000001
20Justin BaileyMaple LeafsRW31325-520312030111910.00%42809.0400004000010050.00%2000000.3600000010
21Jan JenikMarlies (Tor)RW610100040130100.00%06310.6300000000000066.67%300000.3100000000
22Nikita ZaitsevMaple LeafsD1000020213130%12222.220002300011000%00000000000000
Team Total or Average8481502674175747830125412051411400104010.63%3631449417.0941741153521710369181492301153.05%445200110.58813113262929
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Magnus HellbergMarlies (Tor)47281350.9082.3727802211011960030.61513470420
2Dustin TokarskiMarlies (Tor)20010.8951.82660021900000047000
Team Total or Average49281360.9082.362846221121215003134747420


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contrat Signature Date Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
A.J. GreerMarlies (Tor)LW2712/14/1996No204 Lbs6 ft3NoNoN/ANoNo2Pro & Farm1,000,000$0$0$No1,000,000$--------No--------NHL Link
Adam ErneMarlies (Tor)LW/RW284/20/1995No214 Lbs6 ft1NoNoN/ANoNo4Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$1,000,000$------NoNoNo------NHL Link
Andrej SustrMarlies (Tor)D3311/29/1990No217 Lbs6 ft7NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Calle RosenMarlies (Tor)D302/2/1994No195 Lbs6 ft1NoNoN/ANoNo2Pro & Farm850,000$0$0$No850,000$--------No--------NHL Link
Chris WagnerMarlies (Tor)C/RW325/27/1991No198 Lbs6 ft0NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Chris WidemanMarlies (Tor)D341/7/1990No180 Lbs5 ft10NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Dustin TokarskiMarlies (Tor)G349/16/1989No204 Lbs6 ft0NoNoN/ANoNo1Pro & Farm800,000$0$0$No------------------NHL Link
Evgenii DadonovMarlies (Tor)LW/RW343/12/1989No185 Lbs5 ft11NoNoTrade1/1/2024NoNo1Pro & Farm1,500,000$0$0$No------------------NHL Link
Jack StudnickaMarlies (Tor)C252/18/1999Yes175 Lbs6 ft2NoNoTrade12/30/2023NoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Jan JenikMarlies (Tor)RW239/15/2000Yes161 Lbs6 ft0NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Joel HanleyMarlies (Tor)D326/8/1991No191 Lbs5 ft11NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Jordan GrossMarlies (Tor)D285/9/1995No190 Lbs5 ft11NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Josh BrownMarlies (Tor)D301/21/1994No215 Lbs6 ft5NoNoN/ANoNo2Pro & Farm900,000$0$0$No900,000$--------No--------NHL Link
Kevin RooneyMarlies (Tor)C305/21/1993No190 Lbs6 ft2NoNoN/ANoNo2Pro & Farm750,000$0$0$No750,000$--------No--------NHL Link
Magnus HellbergMarlies (Tor)G324/4/1991No209 Lbs6 ft6NoNoN/ANoNo2Pro & Farm950,000$0$0$No950,000$--------No--------
Mason MorelliMarlies (Tor)C/LW282/1/1996No201 Lbs6 ft1NoNoN/ANoNo2Pro & Farm750,000$0$0$No750,000$--------No--------
Matthew MurrayMarlies (Tor)G262/2/1998Yes195 Lbs6 ft1NoNoN/ANoNo1Pro & Farm1,250,000$0$0$No------------------
Max JonesMarlies (Tor)LW262/17/1998No220 Lbs6 ft3NoNoN/ANoNo1Pro & Farm1,295,000$0$0$No------------------
Michael EyssimontMarlies (Tor)C/RW279/6/1996Yes180 Lbs6 ft0NoNoN/ANoNo1Pro & Farm850,000$0$0$No------------------NHL Link
Pontus AndreassonMarlies (Tor)C258/24/1998Yes183 Lbs5 ft10NoNoN/ANoNo1Pro & Farm1,500,000$0$0$No------------------
Sam CarrickMarlies (Tor)C/LW/RW322/4/1992No205 Lbs6 ft0NoNoN/ANoNo1Pro & Farm850,000$0$0$No------------------NHL Link
Sampo RantaMarlies (Tor)LW235/31/2000Yes195 Lbs6 ft2NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Scott HarringtonMarlies (Tor)D303/10/1993No207 Lbs6 ft2NoNoN/ANoNo1Pro & Farm1,000,000$0$0$No------------------NHL Link
Sheldon DriesMarlies (Tor)C294/23/1994No185 Lbs5 ft9NoNoTrade12/30/2023NoNo1Pro & Farm1,000,000$0$0$No------------------NHL Link
Vinnie HinostrozaMarlies (Tor)C/RW294/3/1994No173 Lbs5 ft9NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2529.08195 Lbs6 ft11.36955,800$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adam ErneSam CarrickEvgenii Dadonov35122
2A.J. GreerSheldon DriesVinnie Hinostroza30122
3Max JonesJack StudnickaMichael Eyssimont20122
4Mason MorelliKevin RooneyChris Wagner15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joel HanleyCalle Rosen40032
2Chris WidemanJosh Brown35032
3Jordan GrossScott Harrington25041
4Calle RosenJoel Hanley0032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adam ErneSam CarrickEvgenii Dadonov60005
2A.J. GreerSheldon DriesMichael Eyssimont40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Calle RosenJoel Hanley60014
2Josh BrownChris Wideman40014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jack StudnickaChris Wagner60050
2Sam CarrickA.J. Greer40050
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Scott HarringtonJoel Hanley60050
2Calle RosenJosh Brown40050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jack Studnicka60050Jordan GrossJoel Hanley60050
2Sam Carrick40050Calle RosenJosh Brown40050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Sam CarrickEvgenii Dadonov60023
2Sheldon DriesAdam Erne40023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Calle RosenJoel Hanley60032
2Scott HarringtonJosh Brown40032
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Adam ErneSam CarrickEvgenii DadonovCalle RosenJoel Hanley
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Adam ErneSam CarrickEvgenii DadonovCalle RosenJoel Hanley
Extra Forwards
Normal PowerPlayPenalty Kill
Michael Eyssimont, Max Jones, Jack StudnickaMichael Eyssimont, Max JonesVinnie Hinostroza
Extra Defensemen
Normal PowerPlayPenalty Kill
Chris Wideman, Scott Harrington, Jordan GrossChris WidemanChris Wideman, Scott Harrington
Penalty Shots
A.J. Greer, Sam Carrick, Michael Eyssimont, Evgenii Dadonov, Adam Erne
Goalie
#1 : Magnus Hellberg, #2 : Dustin Tokarski
Custom OT Lines Forwards
Evgenii Dadonov, Adam Erne, Sam Carrick, A.J. Greer, Sheldon Dries, Michael Eyssimont, Michael Eyssimont, Max Jones, Vinnie Hinostroza, Jack Studnicka, Chris Wagner
Custom OT Lines Defensemen
Joel Hanley, Calle Rosen, Chris Wideman, Scott Harrington, Josh Brown


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces22000000624000000000002200000062441.000611170057413111624094254312344121046400.00%5180.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
2Admirals11000000211000000000001100000021121.00024600574131112140942543123239626200.00%30100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
3Americans22000000853220000008530000000000041.0008152300574131116840942543123461484511327.27%4175.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
4Barracuda723001011419-541200100912-33110000157-260.429142539215741311117440942543123174446916623313.04%33487.88%1800148054.05%818152653.60%39070755.16%11617841059369631320
5Bears11000000413000000000001100000041321.00048120057413111264094254312322712234125.00%60100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
6Bruins20001100770000000000002000110077030.7507142100574131114840942543123682320556233.33%10370.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
7Crunch10001000321000000000001000100032121.0003690057413111204094254312323121625200.00%8187.50%1800148054.05%818152653.60%39070755.16%11617841059369631320
8Devils11000000422110000004220000000000021.0004812005741311132409425431232412818300.00%4175.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
9Falcons1010000013-21010000013-20000000000000.000123105741311127409425431232071430200.00%6183.33%0800148054.05%818152653.60%39070755.16%11617841059369631320
10Griffins3020001089-1100000105412020000035-220.333813210057413111874094254312310817286113215.38%14285.71%0800148054.05%818152653.60%39070755.16%11617841059369631320
11Gulls401012001417-3301011001214-21000010023-140.50014253900574131111044094254312393244011417211.76%19763.16%1800148054.05%818152653.60%39070755.16%11617841059369631320
12Heat22000000844110000004221100000042241.00081523005741311156409425431235210185010330.00%9188.89%0800148054.05%818152653.60%39070755.16%11617841059369631320
13Ice Hogs11000000532000000000001100000053221.000510150057413111344094254312323610278450.00%40100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
14Monsters3120000048-42110000045-11010000003-320.3334610005741311186409425431237624228415213.33%11372.73%0800148054.05%818152653.60%39070755.16%11617841059369631320
15Moose211000006511010000023-11100000042220.5006111700574131114240942543123421537406116.67%80100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
16Rampage330000001266110000004312200000083561.0001221330057413111100409425431237527356513215.38%15380.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
17Reign22000000945110000004131100000053241.00091726005741311163409425431235116103916425.00%50100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
18Rocket10000010211000000000001000001021121.0002240057413111214094254312327812293133.33%50100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
19Senators1010000023-11010000023-10000000000000.0002460057413111174094254312343143734100.00%90100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
20Sound Tigers10000010321100000103210000000000021.000336005741311124409425431233098275240.00%4250.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
21Swamp Rabbits1010000023-1000000000001010000023-100.0002460057413111154094254312329412295120.00%60100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
22Thunderbirds11000000303110000003030000000000021.000358015741311122409425431233281822200.00%90100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
23Wheat Kings11000000413000000000001100000041321.0004711005741311133409425431232466434125.00%30100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
24Wild2110000025-32110000025-30000000000020.50024600574131115940942543123441310381317.69%5180.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
25Wolves1000010023-11000010023-10000000000010.5002460057413111344094254312325811316233.33%30100.00%0800148054.05%818152653.60%39070755.16%11617841059369631320
Total47221303531135116192410801320696722312502211664917620.6601352443793257413111127540942543123121834947711671943719.07%2083185.10%3800148054.05%818152653.60%39070755.16%11617841059369631320
_Since Last GM Reset47221303531135116192410801320696722312502211664917620.6601352443793257413111127540942543123121834947711671943719.07%2083185.10%3800148054.05%818152653.60%39070755.16%11617841059369631320
_Vs Conference34171001411968791766013104852-41711400101483513430.632961732692157413111955409425431238542313128301502718.00%1372283.94%2800148054.05%818152653.60%39070755.16%11617841059369631320
_Vs Division1910601301575161054012003132-19520010126197260.68457104161215741311150140942543123456121184455761317.11%791383.54%2800148054.05%818152653.60%39070755.16%11617841059369631320

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4762L113524437912751218349477116732
All Games
GPWLOTWOTL SOWSOLGFGA
4722133531135116
Home Games
GPWLOTWOTL SOWSOLGFGA
2410813206967
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2312522116649
Last 10 Games
WLOTWOTL SOWSOL
531010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1943719.07%2083185.10%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4094254312357413111
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
800148054.05%818152653.60%39070755.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11617841059369631320


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
14Marlies5Reign3AWBoxScore
521Barracuda5Marlies3BLBoxScore
1043Rampage3Marlies4BWBoxScore
1150Marlies1Barracuda2ALXXBoxScore
1468Monsters3Marlies1BLBoxScore
1785Marlies3Aces1AWBoxScore
20100Marlies3Barracuda2AWBoxScore
22111Reign1Marlies4BWBoxScore
23116Marlies3Rampage2AWBoxScore
24127Marlies0Monsters3ALBoxScore
28145Barracuda2Marlies1BLXBoxScore
31155Marlies2Gulls3ALXBoxScore
33171Gulls6Marlies5BLXBoxScore
38194Marlies4Heat2AWBoxScore
40205Heat2Marlies4BWBoxScore
45227Marlies2Bruins3ALXBoxScore
47235Americans2Marlies4BWBoxScore
50251Marlies5Rampage1AWBoxScore
53266Marlies2Griffins3ALBoxScore
54269Monsters2Marlies3BWBoxScore
59290Marlies4Bears1AWBoxScore
61298Wolves3Marlies2BLXBoxScore
63314Marlies2Rocket1AWXXBoxScore
65326Wild1Marlies2BWBoxScore
67335Marlies1Barracuda3ALBoxScore
70352Marlies5Bruins4AWXBoxScore
71360Gulls5Marlies3BLBoxScore
76384Thunderbirds0Marlies3BWBoxScore
78402Marlies4Wheat Kings1AWBoxScore
80414Wild4Marlies0BLBoxScore
84439Gulls3Marlies4BWXBoxScore
91465Falcons3Marlies1BLBoxScore
94484Marlies4Moose2AWBoxScore
97497Barracuda5Marlies3BLBoxScore
103524Senators3Marlies2BLBoxScore
106546Marlies5Ice Hogs3AWBoxScore
108554Sound Tigers2Marlies3BWXXBoxScore
110570Marlies3Aces1AWBoxScore
113585Griffins4Marlies5BWXXBoxScore
117605Marlies3Crunch2AWXBoxScore
118614Moose3Marlies2BLBoxScore
122638Devils2Marlies4BWBoxScore
125655Marlies2Swamp Rabbits3ALBoxScore
127668Barracuda0Marlies2BWBoxScore
129679Marlies2Admirals1AWBoxScore
133699Americans3Marlies4BWBoxScore
136714Marlies1Griffins2ALBoxScore
139728Marlies-Ice Hogs-
140733Aces-Marlies-
144759Heat-Marlies-
147777Marlies-Wheat Kings-
150791Monsters-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
154804Marlies-Wild-
156820Wheat Kings-Marlies-
160847Heat-Marlies-
166874Admirals-Marlies-
169889Marlies-Barracuda-
172904Swamp Rabbits-Marlies-
177933Rampage-Marlies-
179943Marlies-Oil Kings-
183963Ice Hogs-Marlies-
186979Marlies-Penguins-
187992Reign-Marlies-
1901009Marlies-Rampage-
1921018Marlies-Wolves-
1931024Rampage-Marlies-
1971047Marlies-Monsters-
1991054Moose-Marlies-
2021073Marlies-Rampage-
2041081Marlies-Aces-
2051088Reign-Marlies-
2081105Marlies-Wolves-
2111117Admirals-Marlies-
2171145Wolfpack-Marlies-
2181148Marlies-Gulls-
2211169Marlies-Monsters-
2231177Wolfpack-Marlies-
2241180Marlies-Heat-
2281205Phantoms-Marlies-
2291208Marlies-Heat-
2311221Marlies-Reign-
2341234Marlies-Gulls-
2361239Marlies-Reign-
2391255Thunderbirds-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price200100
Attendance34,88216,765
Attendance PCT72.67%69.85%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
18 2152 - 71.73% 498,416$11,961,990$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,894,089$ 3,739,500$ 3,739,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
15,517$ 1,753,056$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
8,971,492$ 105 16,554$ 1,738,170$




Marlies Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA