Login

Monsters
GP: 52 | W: 24 | L: 25 | OTL: 3 | P: 51
GF: 158 | GA: 170 | PP%: 19.87% | PK%: 79.31%
GM : Jonathan Aubin Beaumier | Morale : 50 | Team Overall : 62
Next Games #802 vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Oil Kings
36-16-2, 74pts
4
FINAL
2 Monsters
24-25-3, 51pts
Team Stats
W5StreakL2
18-8-0Home Record13-13-1
18-8-2Away Record11-12-2
10-0-0Last 10 Games5-5-0
3.65Goals Per Game3.04
2.81Goals Against Per Game3.27
24.29%Power Play Percentage19.87%
78.69%Penalty Kill Percentage79.31%
Aces
31-16-6, 68pts
2
FINAL
1 Monsters
24-25-3, 51pts
Team Stats
SOL1StreakL2
13-11-3Home Record13-13-1
18-5-3Away Record11-12-2
4-4-2Last 10 Games5-5-0
3.45Goals Per Game3.04
3.13Goals Against Per Game3.27
24.44%Power Play Percentage19.87%
81.07%Penalty Kill Percentage79.31%
Monsters
24-25-3, 51pts
2023-01-29
Wolves
27-20-7, 61pts
Team Stats
L2StreakL1
13-13-1Home Record17-6-3
11-12-2Away Record10-14-4
5-5-0Last 10 Games6-4-0
3.04Goals Per Game3.48
3.27Goals Against Per Game3.48
19.87%Power Play Percentage23.16%
79.31%Penalty Kill Percentage81.40%
Monsters
24-25-3, 51pts
2023-01-31
Griffins
32-17-3, 67pts
Team Stats
L2StreakW1
13-13-1Home Record19-7-1
11-12-2Away Record13-10-2
5-5-0Last 10 Games4-4-2
3.04Goals Per Game3.42
3.27Goals Against Per Game3.42
19.87%Power Play Percentage25.25%
79.31%Penalty Kill Percentage82.19%
Sound Tigers
25-22-5, 55pts
2023-02-01
Monsters
24-25-3, 51pts
Team Stats
L1StreakL2
11-14-2Home Record13-13-1
14-8-3Away Record11-12-2
3-4-3Last 10 Games5-5-0
3.13Goals Per Game3.04
3.15Goals Against Per Game3.04
21.20%Power Play Percentage19.87%
80.84%Penalty Kill Percentage79.31%
Team Leaders
Hayden HodgsonGoals
Hayden Hodgson
18
Connor MacKeyAssists
Connor MacKey
30
Hayden HodgsonPoints
Hayden Hodgson
44
Connor MacKeyPlus/Minus
Connor MacKey
10
Michael HouserWins
Michael Houser
24
Cory SchneiderSave Percentage
Cory Schneider
0.936

Team Stats
Goals For
158
3.04 GFG
Shots For
1579
30.37 Avg
Power Play Percentage
19.9%
30 GF
Offensive Zone Start
37.2%
Goals Against
170
3.27 GAA
Shots Against
1932
37.15 Avg
Penalty Kill Percentage
79.3%%
48 GA
Defensive Zone Start
44.9%
Team Info

General ManagerJonathan Aubin Beaumier
CoachJeff Blashill
DivisionPacific
ConferenceAmerican
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,985
Season Tickets0


Roster Info

Pro Team22
Farm Team19
Contract Limit41 / 250
Prospects31


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Cole SchneiderXXX100.00663893628085936355646559647277044650322700,000$
2Hayden Hodgson (R)X100.007434616482817765586667596466680506502611,500,000$
3Joel KivirantaXX100.007534846771768266576361586765680506402611,250,000$
4Lukas VejdemoXX100.006738936477767563796264656267680506402711,000,000$
5Michael CarconeX100.006740716263898763605964576768670506202631,000,000$
6Austin Rueschhoff (R)X100.00908565559978845753555864566567050620251900,000$
7Bobby McMann (R)X100.00693892607988845956546360616668050620263800,000$
8Marc Michaelis (R)X100.006636846370776860566160596367690506202731,000,000$
9Liam O'BrienXX100.009072555980737658705657555967680506102851,000,000$
10Jeffrey Truchon-VielX100.008380615781747658555961555665670506102611,000,000$
11Callahan Burke (R)X100.00583782596786855854575655586567050600253800,000$
12Haralds Egle (R)X100.00603791576974675660575854536668050590262750,000$
13Connor MacKey (R)X100.006834616581808364306765625366680506402621,000,000$
14Jack Ahcan (R)X100.00633592656785766430626559536567050630252750,000$
15Kristians Rubins (R)X100.00857459549576735530575659506567050610251700,000$
16Nikolas Brouillard (R)X100.00574363616474865930625756506769047600271750,000$
17Colton Poolman (R)X100.00653792547461855230565155456769050590271750,000$
18Tory Dello (R)X100.00634074557264805430565355466567047580251750,000$
Scratches
1Peter Abbandonato (R)X100.00623688597169725670625657616466050600243800,000$
2Turner Ottenbreit (R)X100.00733974588267885530575356466567047600251750,000$
TEAM AVERAGE100.0070457760767780595060605857666804962
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Michael Houser (R)100.0075717276747375747375747084050660302750,000$
2Cory Schneider100.0074717282737274737274738190050650361750,000$
Scratches
TEAM AVERAGE100.007571727974737574737574768705066
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Blashill79817984726778USA482250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Hayden HodgsonMonsters (Clb)RW521826441360140871764812910.23%9109120.9937103012801111202142.80%26400000.8113000532
2Lukas VejdemoMonsters (Clb)C/LW52162339820181201554212710.32%1897718.8049133412120261072153.66%84800000.8003000312
3Joel KivirantaMonsters (Clb)LW/RW52132235510071105163461317.98%6103419.893692612800031002139.29%8400000.6802000212
4Connor MacKeyMonsters (Clb)D523303310720180877622643.95%93135626.09055301300000172200.00%000000.4900000023
5Jack AhcanMonsters (Clb)D5272330814046667329509.59%89139126.77448341330003198110.00%000100.4300000032
6Cole SchneiderMonsters (Clb)C/LW/RW40121628-41201879110288410.91%1687721.93347199600041692043.61%87600000.6402000110
7Michael CarconeMonsters (Clb)LW5216112763754979121339313.22%673014.041234210111300152.27%4400010.7400010221
8Shane PintoBlue JacketsC24101727-1602610510226769.80%2761625.7005514620113891052.70%79500100.8801000212
9Austin RueschhoffMonsters (Clb)RW40111324-35151294580306213.75%1169717.4343718860000131042.59%5400000.6900001132
10Liam O'BrienMonsters (Clb)C/LW528152354201135550184516.00%456110.7900000000001248.90%45600000.8200000120
11Kristians RubinsMonsters (Clb)D523192231240248374510326.67%73114922.11246161120110129200.00%000000.3800000032
12Bobby McMannMonsters (Clb)C5281220-420159211534736.96%1679915.38101951000032042.83%96200000.5000000020
13Nikolas BrouillardMonsters (Clb)D33213151401130334336.06%4969421.0513417700000126010.00%000000.4300000001
14Marc MichaelisMonsters (Clb)LW52491311004365117447.84%93657.02000120002360042.59%5400000.7100000000
15Colton PoolmanMonsters (Clb)D515712-520045362681619.23%6091918.03202636000187000.00%000000.2600000000
16Haralds EgleMonsters (Clb)RW47841210073566115012.12%354911.7000012000004035.56%4500000.4400000011
17Tory DelloMonsters (Clb)D28178-5200461219875.26%2839514.1400001000027000.00%000000.4000000001
18Peter AbbandonatoMonsters (Clb)C2425714039100920.00%82259.400111120112440042.37%5900000.6200000001
19Jeffrey Truchon-VielMonsters (Clb)LW52246-410018131921810.53%21913.680002100000290036.84%1900000.6300000000
20Callahan BurkeMonsters (Clb)C411231001611659.09%1882.17000020000150044.94%8900000.6800000000
21Turner OttenbreitMonsters (Clb)D511258011440025.00%68016.050000300004010.00%000000.5000000000
Team Total or Average9051512794303048410119911381505422114810.03%5341479416.35285381262121825726150622947.19%464900210.58111011172522
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HouserMonsters (Clb)52242430.9123.2929366316118220000.818115201112
2Cory SchneiderMonsters (Clb)50100.9362.102000071100000.00%0052000
Team Total or Average57242530.9133.2131366316819320001152521112


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Austin RueschhoffMonsters (Clb)RW251997-09-07Yes230 Lbs6 ft7NoNoNo1Pro & Farm900,000$0$0$NoNHL Link
Bobby McMannMonsters (Clb)C261996-06-15Yes203 Lbs6 ft1NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$NHL Link
Callahan BurkeMonsters (Clb)C251997-03-24Yes185 Lbs5 ft10NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$NHL Link
Cole SchneiderMonsters (Clb)C/LW/RW321990-08-26No203 Lbs6 ft1NoNoNo2Pro & Farm700,000$0$0$No700,000$NHL Link
Colton PoolmanMonsters (Clb)D271995-12-18Yes200 Lbs6 ft0NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Connor MacKeyMonsters (Clb)D261996-09-12Yes190 Lbs6 ft2NoNoNo2Pro & Farm1,000,000$0$0$No1,000,000$NHL Link
Cory SchneiderMonsters (Clb)G361986-03-18No200 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Haralds EgleMonsters (Clb)RW261996-11-05Yes194 Lbs5 ft10NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Hayden HodgsonMonsters (Clb)RW261996-03-02Yes207 Lbs6 ft2NoNoNo1Pro & Farm1,500,000$0$0$NoNHL Link
Jack AhcanMonsters (Clb)D251997-05-18Yes178 Lbs5 ft8NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Jeffrey Truchon-VielMonsters (Clb)LW261997-01-28No197 Lbs6 ft0NoNoNo1Pro & Farm1,000,000$0$0$No
Joel KivirantaMonsters (Clb)LW/RW261996-03-23No176 Lbs5 ft10NoNoNo1Pro & Farm1,250,000$0$0$NoNHL Link
Kristians RubinsMonsters (Clb)D251997-12-11Yes221 Lbs6 ft5NoNoNo1Pro & Farm700,000$0$0$NoNHL Link
Liam O'BrienMonsters (Clb)C/LW281994-07-29No215 Lbs6 ft1NoNoNo5Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$1,000,000$1,000,000$NHL Link
Lukas VejdemoMonsters (Clb)C/LW271996-01-25No196 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$0$0$NoNHL Link
Marc MichaelisMonsters (Clb)LW271995-07-31Yes187 Lbs5 ft11NoNoNo3Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$NHL Link
Michael CarconeMonsters (Clb)LW261996-05-19No170 Lbs5 ft9NoNoNo3Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$NHL Link
Michael HouserMonsters (Clb)G301992-09-13Yes185 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Nikolas BrouillardMonsters (Clb)D271995-02-07Yes168 Lbs5 ft11NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Peter AbbandonatoMonsters (Clb)C241998-03-25Yes194 Lbs5 ft10NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$NHL Link
Tory DelloMonsters (Clb)D251997-02-14Yes190 Lbs6 ft0NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Turner OttenbreitMonsters (Clb)D251997-07-09Yes192 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2226.82195 Lbs6 ft11.86884,091$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lukas VejdemoCole SchneiderHayden Hodgson40122
2Joel KivirantaBobby McMannAustin Rueschhoff30122
3Michael CarconeLiam O'BrienHaralds Egle20122
4Marc MichaelisCallahan BurkeHayden Hodgson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor MacKeyJack Ahcan40122
2Kristians RubinsNikolas Brouillard30122
3Colton PoolmanTory Dello20122
4Connor MacKeyJack Ahcan10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lukas VejdemoCole SchneiderHayden Hodgson60122
2Joel KivirantaBobby McMannAustin Rueschhoff40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor MacKeyJack Ahcan60122
2Kristians RubinsNikolas Brouillard40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Hayden HodgsonCole Schneider60122
2Lukas VejdemoJoel Kiviranta40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor MacKeyJack Ahcan60122
2Kristians RubinsNikolas Brouillard40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Hayden Hodgson60122Connor MacKeyJack Ahcan60122
2Cole Schneider40122Kristians RubinsNikolas Brouillard40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Hayden HodgsonCole Schneider60122
2Lukas VejdemoJoel Kiviranta40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor MacKeyJack Ahcan60122
2Kristians RubinsNikolas Brouillard40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Lukas VejdemoCole SchneiderHayden HodgsonConnor MacKeyJack Ahcan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Lukas VejdemoCole SchneiderHayden HodgsonConnor MacKeyJack Ahcan
Extra Forwards
Normal PowerPlayPenalty Kill
Jeffrey Truchon-Viel, Michael Carcone, Marc MichaelisJeffrey Truchon-Viel, Michael CarconeMarc Michaelis
Extra Defensemen
Normal PowerPlayPenalty Kill
Colton Poolman, Tory Dello, Kristians RubinsColton PoolmanTory Dello, Kristians Rubins
Penalty Shots
Hayden Hodgson, Cole Schneider, Lukas Vejdemo, Joel Kiviranta, Austin Rueschhoff
Goalie
#1 : Michael Houser, #2 : Cory Schneider
Custom OT Lines Forwards
Hayden Hodgson, Cole Schneider, Lukas Vejdemo, Joel Kiviranta, Austin Rueschhoff, Bobby McMann, Bobby McMann, Michael Carcone, Marc Michaelis, Liam O'Brien, Jeffrey Truchon-Viel
Custom OT Lines Defensemen
Connor MacKey, Jack Ahcan, Kristians Rubins, Nikolas Brouillard, Colton Poolman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces312000008711010000012-12110000075220.333814220064474346853450652624121274664500.00%21671.43%0836173548.18%969209346.30%40383148.50%11597811321388661318
2Admirals421001001013-31100000031231100100712-550.6251018280064474341125345065262413940429513215.38%20480.00%1836173548.18%969209346.30%40383148.50%11597811321388661318
3Americans11000000303110000003030000000000021.00034701644743428534506526242384207114.29%20100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
4Barracuda32100000151141010000034-122000000127540.667152742006447434118534506526249023206912433.33%9277.78%0836173548.18%969209346.30%40383148.50%11597811321388661318
5Bruins1010000036-31010000036-30000000000000.00035800644743432534506526242641217300.00%6350.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
6Crunch1010000038-5000000000001010000038-500.000369006447434255345065262441917253133.33%6350.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
7Devils11000000211000000000001100000021121.0002350064474343953450652624405622400.00%30100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
8Gulls522000011317-4211000009813110000149-550.50013243701644743414553450652624175574813112216.67%24579.17%1836173548.18%969209346.30%40383148.50%11597811321388661318
9Heat3110100013112211000009811000100043140.6671322350064474341055345065262410721287610330.00%13376.92%1836173548.18%969209346.30%40383148.50%11597811321388661318
10Ice Hogs11000000734110000007340000000000021.0007142100644743434534506526244478235240.00%40100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
11Marlies21100000431110000004221010000001-120.50048120064474345053450652624702712464125.00%60100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
12Moose2010100045-12010100045-10000000000020.5004812006447434595345065262462231453400.00%6266.67%0836173548.18%969209346.30%40383148.50%11597811321388661318
13Oil Kings1010000024-21010000024-20000000000000.00024600644743421534506526243276213133.33%30100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
14Penguins11000000633110000006330000000000021.000612180064474344053450652624381412254250.00%6266.67%0836173548.18%969209346.30%40383148.50%11597811321388661318
15Phantoms1010000012-11010000012-10000000000000.000123006447434265345065262430510183133.33%5180.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
16Rampage715000101724-730300000713-6412000101011-140.2861730470064474342295345065262429191731671715.88%29582.76%0836173548.18%969209346.30%40383148.50%11597811321388661318
17Reign413000001017-72110000076120200000311-820.2501017270064474341155345065262417952591178225.00%22577.27%0836173548.18%969209346.30%40383148.50%11597811321388661318
18Rocket11000000404000000000001100000040421.000481201644743434534506526242768233133.33%40100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
19Senators11000000431110000004310000000000021.000471100644743430534506526245214623200.00%3166.67%0836173548.18%969209346.30%40383148.50%11597811321388661318
20Swamp Rabbits1010000014-3000000000001010000014-300.00011200644743428534506526244619819500.00%30100.00%0836173548.18%969209346.30%40383148.50%11597811321388661318
21Wheat Kings42100001161512100000110912110000066050.6251629450064474341305345065262413635208812325.00%9188.89%0836173548.18%969209346.30%40383148.50%11597811321388661318
22Wild2010100056-12010100056-10000000000020.50058130064474344953450652624762224424125.00%12283.33%0836173548.18%969209346.30%40383148.50%11597811321388661318
23Wolves21100000770110000005321010000024-220.500713200064474346253450652624872134598225.00%16381.25%0836173548.18%969209346.30%40383148.50%11597811321388661318
Total52202503112158170-12271113020019388525912011116582-17510.490158284442036447434157953450652624193253751712431513019.87%2324879.31%3836173548.18%969209346.30%40383148.50%11597811321388661318
_Since Last GM Reset52202503112158170-12271113020019388525912011116582-17510.490158284442036447434157953450652624193253751712431513019.87%2324879.31%3836173548.18%969209346.30%40383148.50%11597811321388661318
_Vs Conference42152003112129139-1021810020017470421710011115569-14410.488129232361016447434127653450652624157744642810301142320.18%1913880.10%3836173548.18%969209346.30%40383148.50%11597811321388661318
_Vs Division21813010116572-71147000003537-21046010113035-5210.5006511618101644743463153450652624766210221531541222.22%982376.53%2836173548.18%969209346.30%40383148.50%11597811321388661318

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5251L215828444215791932537517124303
All Games
GPWLOTWOTL SOWSOLGFGA
5220253112158170
Home Games
GPWLOTWOTL SOWSOLGFGA
27111320019388
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2591211116582
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1513019.87%2324879.31%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
534506526246447434
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
836173548.18%969209346.30%40383148.50%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11597811321388661318


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-10-1111Monsters4Heat3AWXBoxScore
3 - 2022-10-1219Monsters4Wheat Kings3AWBoxScore
4 - 2022-10-1328Gulls6Monsters3BLBoxScore
7 - 2022-10-1646Monsters2Rampage4ALBoxScore
8 - 2022-10-1759Heat6Monsters4BLBoxScore
11 - 2022-10-2077Monsters0Marlies1ALBoxScore
13 - 2022-10-2289Moose1Monsters2BWXBoxScore
15 - 2022-10-24107Reign3Monsters5BWBoxScore
16 - 2022-10-25119Monsters1Reign6ALBoxScore
18 - 2022-10-27139Marlies2Monsters4BWBoxScore
21 - 2022-10-30157Monsters1Gulls0AWBoxScore
23 - 2022-11-01172Rampage6Monsters5BLBoxScore
26 - 2022-11-04191Barracuda4Monsters3BLBoxScore
27 - 2022-11-05200Monsters2Wheat Kings3ALBoxScore
29 - 2022-11-07217Bruins6Monsters3BLBoxScore
30 - 2022-11-08222Monsters3Rampage4ALBoxScore
32 - 2022-11-10240Monsters6Barracuda4AWBoxScore
33 - 2022-11-11247Monsters4Admirals5ALXBoxScore
36 - 2022-11-14269Wild2Monsters3BWXBoxScore
39 - 2022-11-17291Monsters4Rocket0AWBoxScore
40 - 2022-11-18298Rampage3Monsters0BLBoxScore
43 - 2022-11-21318Americans0Monsters3BWBoxScore
45 - 2022-11-23334Monsters2Rampage1AWXXBoxScore
47 - 2022-11-25351Admirals1Monsters3BWBoxScore
50 - 2022-11-28368Monsters0Admirals5ALBoxScore
51 - 2022-11-29379Gulls2Monsters6BWBoxScore
54 - 2022-12-02398Heat2Monsters5BWBoxScore
56 - 2022-12-04413Monsters2Wolves4ALBoxScore
58 - 2022-12-06427Penguins3Monsters6BWBoxScore
60 - 2022-12-08438Monsters6Barracuda3AWBoxScore
62 - 2022-12-10452Monsters3Crunch8ALBoxScore
65 - 2022-12-13472Monsters2Reign5ALBoxScore
66 - 2022-12-14479Ice Hogs3Monsters7BWBoxScore
68 - 2022-12-16495Monsters2Gulls3ALXXBoxScore
70 - 2022-12-18507Reign3Monsters2BLBoxScore
73 - 2022-12-21529Rampage4Monsters2BLBoxScore
76 - 2022-12-24550Wheat Kings5Monsters4BLXXBoxScore
77 - 2022-12-25555Monsters3Rampage2AWBoxScore
80 - 2022-12-28576Monsters1Swamp Rabbits4ALBoxScore
82 - 2022-12-30589Senators3Monsters4BWBoxScore
85 - 2023-01-02610Moose4Monsters2BLBoxScore
88 - 2023-01-05631Monsters1Gulls6ALBoxScore
89 - 2023-01-06643Wild4Monsters2BLBoxScore
93 - 2023-01-10665Wolves3Monsters5BWBoxScore
95 - 2023-01-12680Monsters3Admirals2AWBoxScore
97 - 2023-01-14696Monsters5Aces2AWBoxScore
98 - 2023-01-15703Phantoms2Monsters1BLBoxScore
101 - 2023-01-18724Wheat Kings4Monsters6BWBoxScore
102 - 2023-01-19734Monsters2Aces3ALBoxScore
105 - 2023-01-22747Monsters2Devils1AWBoxScore
107 - 2023-01-24761Oil Kings4Monsters2BLBoxScore
110 - 2023-01-27787Aces2Monsters1BLBoxScore
112 - 2023-01-29802Monsters-Wolves-
114 - 2023-01-31818Monsters-Griffins-
115 - 2023-02-01826Sound Tigers-Monsters-
118 - 2023-02-04846Monsters-Barracuda-
119 - 2023-02-05852Moose-Monsters-
122 - 2023-02-08871Monsters-Moose-
124 - 2023-02-10883Wolfpack-Monsters-
126 - 2023-02-12902Monsters-Wheat Kings-
127 - 2023-02-13911Monsters-Wild-
129 - 2023-02-15920Gulls-Monsters-
132 - 2023-02-18943Heat-Monsters-
134 - 2023-02-20956Monsters-Falcons-
136 - 2023-02-22972Swamp Rabbits-Monsters-
138 - 2023-02-24983Monsters-Wild-
141 - 2023-02-271002Reign-Monsters-
142 - 2023-02-281012Monsters-Reign-
145 - 2023-03-031032Marlies-Monsters-
146 - 2023-03-041043Monsters-Marlies-
147 - 2023-03-051052Monsters-Ice Hogs-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2023-03-071069Griffins-Monsters-
150 - 2023-03-081078Monsters-Heat-
153 - 2023-03-111098Barracuda-Monsters-
156 - 2023-03-141118Monsters-Wheat Kings-
158 - 2023-03-161129Barracuda-Monsters-
160 - 2023-03-181146Monsters-Griffins-
162 - 2023-03-201158Monsters-Bears-
163 - 2023-03-211164Ice Hogs-Monsters-
167 - 2023-03-251190Bruins-Monsters-
171 - 2023-03-291211Marlies-Monsters-
172 - 2023-03-301221Monsters-Heat-
177 - 2023-04-041241Thunderbirds-Monsters-
178 - 2023-04-051251Monsters-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price200100
Attendance36,09217,497
Attendance PCT66.84%64.80%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
15 1985 - 66.16% 415,190$11,210,125$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,363,373$ 1,945,000$ 1,945,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,806$ 1,209,272$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
6,227,847$ 69 12,194$ 841,386$




Monsters Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Monsters Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Monsters Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Monsters Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA