Login

Ice Hogs
GP: 52 | W: 22 | L: 22 | OTL: 8 | P: 52
GF: 174 | GA: 182 | PP%: 22.22% | PK%: 80.73%
GM : Marc Brideau | Morale : 50 | Team Overall : 63
Next Games #812 vs Marlies
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Ice Hogs
22-22-8, 52pts
1
FINAL
2 Bears
26-23-6, 58pts
Team Stats
W1StreakL1
12-10-5Home Record15-7-4
10-12-3Away Record11-16-2
6-1-3Last 10 Games4-6-0
3.35Goals Per Game3.18
3.50Goals Against Per Game2.91
22.22%Power Play Percentage18.37%
80.73%Penalty Kill Percentage77.04%
Wolves
27-20-7, 61pts
2
FINAL
4 Ice Hogs
22-22-8, 52pts
Team Stats
L1StreakW1
17-6-3Home Record12-10-5
10-14-4Away Record10-12-3
6-4-0Last 10 Games6-1-3
3.48Goals Per Game3.35
3.43Goals Against Per Game3.50
23.16%Power Play Percentage22.22%
81.40%Penalty Kill Percentage80.73%
Marlies
31-20-2, 64pts
2023-01-30
Ice Hogs
22-22-8, 52pts
Team Stats
SOW1StreakW1
16-9-2Home Record12-10-5
15-11-0Away Record10-12-3
5-4-1Last 10 Games6-1-3
2.96Goals Per Game3.35
2.68Goals Against Per Game3.35
20.21%Power Play Percentage22.22%
83.93%Penalty Kill Percentage80.73%
Ice Hogs
22-22-8, 52pts
2023-02-01
Marlies
31-20-2, 64pts
Team Stats
W1StreakSOW1
12-10-5Home Record16-9-2
10-12-3Away Record15-11-0
6-1-3Last 10 Games5-4-1
3.35Goals Per Game2.96
3.50Goals Against Per Game2.96
22.22%Power Play Percentage20.21%
80.73%Penalty Kill Percentage83.93%
Wild
18-29-7, 43pts
2023-02-04
Ice Hogs
22-22-8, 52pts
Team Stats
OTW1StreakW1
12-13-2Home Record12-10-5
6-16-5Away Record10-12-3
5-4-1Last 10 Games6-1-3
3.07Goals Per Game3.35
3.78Goals Against Per Game3.35
20.63%Power Play Percentage22.22%
74.73%Penalty Kill Percentage80.73%
Team Leaders
Scott ReedyGoals
Scott Reedy
28
Jesper FrodenAssists
Jesper Froden
31
Jesper FrodenPoints
Jesper Froden
56
Jesper FrodenPlus/Minus
Jesper Froden
11
Pheonix CopleyWins
Pheonix Copley
22
Ukko-Pekka LuukkonenSave Percentage
Ukko-Pekka Luukkonen
0.953

Team Stats
Goals For
174
3.35 GFG
Shots For
1717
33.02 Avg
Power Play Percentage
22.2%
34 GF
Offensive Zone Start
39.3%
Goals Against
182
3.50 GAA
Shots Against
1786
34.35 Avg
Penalty Kill Percentage
80.7%%
42 GA
Defensive Zone Start
41.6%
Team Info

General ManagerMarc Brideau
CoachJim Montgomery
DivisionCentral
ConferenceAmerican
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,972
Season Tickets0


Roster Info

Pro Team21
Farm Team20
Contract Limit41 / 250
Prospects32


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Joe Veleno (R)X100.007638896779839566826465686762640446602311,200,000$
2Matt LuffX100.007134896780797665616467626366680506502531,000,000$
3Anton BlidhXX100.00883576657775736457636270646667050650272800,000$
4Jesper FrodenX100.00623782686689806763616665696870050650282750,000$
5Scott Reedy (R)X100.00683890678178846370626764656364050650232900,000$
6Brett Leason (R)X100.007741876193758862576061646263650506402321,000,000$
7Hudson FaschingX100.00743994628481856165625862596769050640272800,000$
8Lias Andersson (R)XXX100.006035826574787563725860576264650506202411,000,000$
9Givani Smith (R)XX100.00848360568374785755585956616365050610242950,000$
10Daniel Walcott (R)X100.00834263547277795561565758546870050600281750,000$
11Nick Jones (R)XX100.00524483566887885461535552566764050580261750,000$
12Anthony BitettoX100.00723977618179766230666163537274050640321750,000$
13Ben Gleason (R)X100.00643877627376946130655655486466050620242800,000$
14Sean Day (R)X100.00773982578776855930615763486466050620251900,000$
15Brian LashoffX100.00774283578665885630555458467277050610321750,000$
16Brandon DavidsonX100.00824370598281655630555268467173050610311750,000$
17Brayden Pachal (R)X100.00673878567974835830575661526365050600233800,000$
18Joe HickettsX100.00553782596477885830625654486668050600262750,000$
Scratches
TEAM AVERAGE100.0072418061787882605160596157666805063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Pheonix Copley100.0075747586747375747375747084050660312875,000$
2Ukko-Pekka Luukkonen (R)100.0074838293737274737274736369050650231900,000$
Scratches
1Jack LaFontaine (R)100.0070717081696870696870696471050630251800,000$
TEAM AVERAGE100.007376768772717372717372667505065
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jim Montgomery66727570797371CAN531250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jesper FrodenIce Hogs (Chi)RW5225315611100121012367315610.59%692117.7231013471240001143043.59%7800001.2202000441
2Scott ReedyIce Hogs (Chi)C522825531060151462084514013.46%18100319.305493910811261154051.74%126200001.0612000542
3Anton BlidhIce Hogs (Chi)LW/RW52242044-74602491142325817210.34%31126424.3175123613500021940145.13%11300000.7004000632
4Matt LuffIce Hogs (Chi)RW52172441-2802785176531419.66%1792517.79791628138000003047.22%7200000.8924000000
5Joe VelenoIce Hogs (Chi)C3114223694030941163210612.07%865321.07156238101161204055.47%101500001.1012000223
6Ben GleasonIce Hogs (Chi)D5242933830087535416477.41%65114121.96358341330000176000.00%000000.5800000221
7Brett LeasonIce Hogs (Chi)RW52161531-41604870138499011.59%1471813.8220237000001134.62%5200000.8601000204
8Lias AnderssonIce Hogs (Chi)C/LW/RW5282230-260199511133737.21%979615.310111181013561149.50%69900000.7501000032
9Sean DayIce Hogs (Chi)D5232730-8400118476123614.92%80107220.6311112301270111154000.00%000000.5600000020
10Anthony BitettoIce Hogs (Chi)D45722296500130687318599.59%92113525.24235351160001139110.00%000000.5100000200
11Brian LashoffIce Hogs (Chi)D52317202395105295011326.00%53103819.97246241280111150000.00%000000.3900001001
12Brandon DavidsonIce Hogs (Chi)D52316191640143452783411.11%7184316.21112523011086000.00%000000.4500000002
13Givani SmithIce Hogs (Chi)LW/RW523131699810206317229724.17%1193417.97033161071015630046.38%6900000.3400200002
14Brayden PachalIce Hogs (Chi)D5241115-420044272892314.29%4375214.4700004000024210.00%000000.4000000000
15Daniel WalcottIce Hogs (Chi)LW526814-6380124416418499.38%1166612.8200000000020047.73%4400000.4200000110
16Hudson FaschingIce Hogs (Chi)RW5253800015213993112.82%52073.9900013000001015.38%1300000.7700000001
17Joe HickettsIce Hogs (Chi)D520442401595260.00%142865.510000000004000.00%000000.2800000000
18Nick JonesIce Hogs (Chi)C/RW522130001151321115.38%01973.7900000000000045.15%23700000.3000000000
Team Total or Average9081723104822547915138810911703488130310.10%5481455816.03346195322126035826130320550.93%365400000.66416201242121
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleyIce Hogs (Chi)52222280.8963.5529060117216560210.66718520143
2Ukko-Pekka LuukkonenIce Hogs (Chi)80000.9531.532360061290000.00%0052000
Team Total or Average60222280.9003.403143011781785021185252143


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Anthony BitettoIce Hogs (Chi)D321990-07-15No210 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Anton BlidhIce Hogs (Chi)LW/RW271995-03-14No201 Lbs6 ft0NoNoNo2Pro & Farm800,000$0$0$No800,000$NHL Link
Ben GleasonIce Hogs (Chi)D241998-03-25Yes185 Lbs6 ft1NoNoNo2Pro & Farm800,000$0$0$No800,000$NHL Link
Brandon DavidsonIce Hogs (Chi)D311991-08-21No208 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Brayden PachalIce Hogs (Chi)D231999-08-23Yes200 Lbs6 ft1NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$NHL Link
Brett LeasonIce Hogs (Chi)RW231999-04-30Yes218 Lbs6 ft5NoNoNo2Pro & Farm1,000,000$0$0$No1,000,000$NHL Link
Brian LashoffIce Hogs (Chi)D321990-07-16No219 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Daniel WalcottIce Hogs (Chi)LW281994-02-19Yes175 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Givani SmithIce Hogs (Chi)LW/RW241998-02-27Yes204 Lbs6 ft2NoNoNo2Pro & Farm950,000$0$0$No950,000$NHL Link
Hudson FaschingIce Hogs (Chi)RW271995-07-28No204 Lbs6 ft3NoNoNo2Pro & Farm800,000$0$0$No800,000$NHL Link
Jack LaFontaineIce Hogs (Chi)G251998-01-06Yes204 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$NoNHL Link
Jesper FrodenIce Hogs (Chi)RW281994-09-21No179 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Joe HickettsIce Hogs (Chi)D261996-05-04No180 Lbs5 ft8NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Joe VelenoIce Hogs (Chi)C232000-01-13Yes198 Lbs6 ft1NoNoNo1Pro & Farm1,200,000$0$0$NoNHL Link
Lias AnderssonIce Hogs (Chi)C/LW/RW241998-10-13Yes204 Lbs6 ft0NoNoNo1Pro & Farm1,000,000$0$0$NoNHL Link
Matt LuffIce Hogs (Chi)RW251997-05-05No190 Lbs6 ft2NoNoNo3Pro & Farm1,000,000$0$0$No1,000,000$1,000,000$NHL Link
Nick JonesIce Hogs (Chi)C/RW261996-06-02Yes176 Lbs5 ft10NoNoNo1Pro & Farm750,000$0$0$No
Pheonix CopleyIce Hogs (Chi)G311992-01-18No200 Lbs6 ft4NoNoNo2Pro & Farm875,000$0$0$No875,000$NHL Link
Scott ReedyIce Hogs (Chi)C231999-04-09Yes205 Lbs6 ft2NoNoNo2Pro & Farm900,000$0$0$No900,000$NHL Link
Sean DayIce Hogs (Chi)D251998-01-09Yes225 Lbs6 ft3NoNoNo1Pro & Farm900,000$0$0$NoNHL Link
Ukko-Pekka LuukkonenIce Hogs (Chi)G231999-03-09Yes220 Lbs6 ft4NoNoNo1Pro & Farm900,000$0$0$NoNHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2126.19200 Lbs6 ft11.62855,952$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhMatt Luff40122
2Givani SmithScott ReedyJesper Froden30122
3Daniel WalcottLias AnderssonBrett Leason20122
4Anton BlidhNick JonesHudson Fasching10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason40122
2Sean DayBrian Lashoff30122
3Brandon DavidsonBrayden Pachal20122
4Joe HickettsAnthony Bitetto10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhMatt Luff60122
2Givani SmithScott ReedyJesper Froden40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason60122
2Sean DayBrian Lashoff40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Anton Blidh60122
2Scott ReedyGivani Smith40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason60122
2Sean DayBrian Lashoff40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Anthony BitettoBen Gleason60122
2Scott Reedy40122Sean DayBrian Lashoff40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Anton Blidh60122
2Scott ReedyGivani Smith40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoBen Gleason60122
2Sean DayBrian Lashoff40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anton BlidhMatt LuffAnthony BitettoBen Gleason
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anton BlidhMatt LuffAnthony BitettoBen Gleason
Extra Forwards
Normal PowerPlayPenalty Kill
Scott Reedy, Brett Leason, Hudson FaschingScott Reedy, Brett LeasonScott Reedy
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Davidson, Brayden Pachal, Joe HickettsBrandon DavidsonBrandon Davidson, Brayden Pachal
Penalty Shots
, Anton Blidh, Matt Luff, Jesper Froden, Scott Reedy
Goalie
#1 : Pheonix Copley, #2 : Ukko-Pekka Luukkonen
Custom OT Lines Forwards
, Anton Blidh, Matt Luff, Jesper Froden, Scott Reedy, Brett Leason, Brett Leason, Hudson Fasching, Lias Andersson, Givani Smith, Daniel Walcott
Custom OT Lines Defensemen
Anthony Bitetto, Ben Gleason, Sean Day, Brian Lashoff, Brandon Davidson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces523000001214-22020000037-43210000097240.40012213300764551513856656956733151586012412216.67%29389.66%1832179346.40%867190245.58%40687346.51%11868081302390661321
2Admirals624000002322131200000990312000001413140.33323436600764551519856656956733194746415917529.41%30583.33%1832179346.40%867190245.58%40687346.51%11868081302390661321
3Americans1000010045-11000010045-10000000000010.50048120076455153156656956733431216246116.67%60100.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
4Barracuda21100000642110000004131010000023-120.5006111700764551586566569567335922164911218.18%8187.50%0832179346.40%867190245.58%40687346.51%11868081302390661321
5Bears2010010024-2000000000002010010024-210.2502460076455153956656956733601520513133.33%100100.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
6Crunch10000010431000000000001000001043121.0004610007645515245665695673335124325240.00%2150.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
7Devils1000010045-11000010045-10000000000010.5004711007645515475665695673348812416350.00%6266.67%0832179346.40%867190245.58%40687346.51%11868081302390661321
8Griffins505000001024-142020000058-330300000516-1100.000101828107645515168566569567331905551128900.00%20670.00%1832179346.40%867190245.58%40687346.51%11868081302390661321
9Heat2010000179-22010000179-20000000000010.25071219007645515625665695673369171264300.00%6350.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
10Marlies31200000510-531200000510-50000000000020.33359140076455158056656956733893222921200.00%11281.82%0832179346.40%867190245.58%40687346.51%11868081302390661321
11Monsters1010000037-4000000000001010000037-400.00036900764551544566569567333481028400.00%5260.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
12Moose521011001314-1310011008712110000057-270.70013243700764551518756656956733179623613214214.29%17476.47%0832179346.40%867190245.58%40687346.51%11868081302390661321
13Oil Kings1000000123-1000000000001000000123-110.500246007645515425665695673337118195120.00%4175.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
14Penguins11000000633110000006330000000000021.0006101600764551542566569567332482245240.00%10100.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
15Phantoms11000000633000000000001100000063321.00061016007645515285665695673340161020300.00%5180.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
16Reign11000000321110000003210000000000021.00035800764551529566569567333258424125.00%30100.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
17Sound Tigers1010000045-1000000000001010000045-100.000481200764551529566569567334410822200.00%4250.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
18Swamp Rabbits1010000025-31010000025-30000000000000.000246007645515235665695673339131217100.00%6266.67%0832179346.40%867190245.58%40687346.51%11868081302390661321
19Wheat Kings4400000022111122000000105522000000126681.00022406200764551514456656956733126343111210330.00%120100.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
20Wild320001001376210001008711100000050550.83313233601764551587566569567331102934754125.00%15286.67%0832179346.40%867190245.58%40687346.51%11868081302390661321
21Wolfpack1010000035-2000000000001010000035-200.000369007645515375665695673325721322100.00%10100.00%0832179346.40%867190245.58%40687346.51%11868081302390661321
22Wolves430000012017322000000963210000011111070.87520365600764551515256656956733158434112015640.00%17570.59%0832179346.40%867190245.58%40687346.51%11868081302390661321
Total52202201513174182-8271110014018789-225912001128793-6520.500174315489117645515171756656956733178655147913881533422.22%2184280.73%3832179346.40%867190245.58%40687346.51%11868081302390661321
_Since Last GM Reset52202201513174182-8271110014018789-225912001128793-6520.500174315489117645515171756656956733178655147913881533422.22%2184280.73%3832179346.40%867190245.58%40687346.51%11868081302390661321
_Vs Conference41181801202137141-42310901201717101889000016670-4420.512137248385117645515137556656956733139143938511251152219.13%1733380.92%3832179346.40%867190245.58%40687346.51%11868081302390661321
_Vs Division17151301201785721976012003627988700001423012351.0297814222001764551558156656956733588180170466461532.61%741283.78%1832179346.40%867190245.58%40687346.51%11868081302390661321

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5252W117431548917171786551479138811
All Games
GPWLOTWOTL SOWSOLGFGA
5220221513174182
Home Games
GPWLOTWOTL SOWSOLGFGA
27111014018789
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2591201128793
Last 10 Games
WLOTWOTL SOWSOL
511201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1533422.22%2184280.73%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
566569567337645515
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
832179346.40%867190245.58%40687346.51%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11868081302390661321


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-103Ice Hogs2Moose5ALBoxScore
3 - 2022-10-1221Aces4Ice Hogs2BLBoxScore
6 - 2022-10-1537Marlies2Ice Hogs3BWBoxScore
8 - 2022-10-1761Ice Hogs5Wild0AWBoxScore
9 - 2022-10-1865Ice Hogs4Aces2AWBoxScore
12 - 2022-10-2184Griffins4Ice Hogs2BLBoxScore
14 - 2022-10-2398Moose2Ice Hogs3BWBoxScore
16 - 2022-10-25120Ice Hogs5Wheat Kings3AWBoxScore
17 - 2022-10-26130Ice Hogs8Admirals4AWBoxScore
19 - 2022-10-28140Wolves4Ice Hogs5BWBoxScore
21 - 2022-10-30158Wheat Kings3Ice Hogs5BWBoxScore
23 - 2022-11-01170Ice Hogs3Griffins5ALBoxScore
26 - 2022-11-04192Admirals3Ice Hogs2BLBoxScore
28 - 2022-11-06211Wild4Ice Hogs6BWBoxScore
30 - 2022-11-08221Ice Hogs5Wolves6ALXXBoxScore
32 - 2022-11-10242Marlies3Ice Hogs1BLBoxScore
34 - 2022-11-12251Ice Hogs0Griffins6ALBoxScore
35 - 2022-11-13263Ice Hogs7Wheat Kings3AWBoxScore
38 - 2022-11-16279Admirals4Ice Hogs3BLBoxScore
39 - 2022-11-17290Ice Hogs3Admirals4ALBoxScore
41 - 2022-11-19305Heat5Ice Hogs4BLXXBoxScore
44 - 2022-11-22323Ice Hogs3Moose2AWBoxScore
45 - 2022-11-23337Ice Hogs3Admirals5ALBoxScore
47 - 2022-11-25348Marlies5Ice Hogs1BLBoxScore
50 - 2022-11-28367Barracuda1Ice Hogs4BWBoxScore
52 - 2022-11-30382Ice Hogs2Barracuda3ALBoxScore
54 - 2022-12-02397Griffins4Ice Hogs3BLBoxScore
56 - 2022-12-04414Ice Hogs4Sound Tigers5ALBoxScore
58 - 2022-12-06428Ice Hogs2Griffins5ALBoxScore
60 - 2022-12-08437Penguins3Ice Hogs6BWBoxScore
62 - 2022-12-10454Ice Hogs3Aces2AWBoxScore
64 - 2022-12-12471Admirals2Ice Hogs4BWBoxScore
66 - 2022-12-14479Ice Hogs3Monsters7ALBoxScore
68 - 2022-12-16494Heat4Ice Hogs3BLBoxScore
71 - 2022-12-19517Ice Hogs2Aces3ALBoxScore
73 - 2022-12-21530Swamp Rabbits5Ice Hogs2BLBoxScore
77 - 2022-12-25554Moose2Ice Hogs1BLXBoxScore
80 - 2022-12-28574Aces3Ice Hogs1BLBoxScore
83 - 2022-12-31601Ice Hogs4Crunch3AWXXBoxScore
84 - 2023-01-01608Americans5Ice Hogs4BLXBoxScore
87 - 2023-01-04625Ice Hogs3Wolfpack5ALBoxScore
89 - 2023-01-06638Devils5Ice Hogs4BLXBoxScore
91 - 2023-01-08654Ice Hogs6Phantoms3AWBoxScore
93 - 2023-01-10666Wheat Kings2Ice Hogs5BWBoxScore
96 - 2023-01-13683Ice Hogs1Bears2ALXBoxScore
97 - 2023-01-14697Moose3Ice Hogs4BWXBoxScore
100 - 2023-01-17715Ice Hogs2Oil Kings3ALXXBoxScore
102 - 2023-01-19728Wild3Ice Hogs2BLXBoxScore
104 - 2023-01-21745Ice Hogs6Wolves5AWBoxScore
106 - 2023-01-23756Reign2Ice Hogs3BWBoxScore
109 - 2023-01-26777Ice Hogs1Bears2ALBoxScore
110 - 2023-01-27789Wolves2Ice Hogs4BWBoxScore
113 - 2023-01-30812Marlies-Ice Hogs-
115 - 2023-02-01822Ice Hogs-Marlies-
118 - 2023-02-04844Wild-Ice Hogs-
120 - 2023-02-06861Ice Hogs-Rocket-
122 - 2023-02-08875Rampage-Ice Hogs-
126 - 2023-02-12899Ice Hogs-Wolves-
127 - 2023-02-13906Reign-Ice Hogs-
130 - 2023-02-16932Wheat Kings-Ice Hogs-
132 - 2023-02-18947Ice Hogs-Rampage-
135 - 2023-02-21961Ice Hogs-Heat-
136 - 2023-02-22967Falcons-Ice Hogs-
139 - 2023-02-25990Ice Hogs-Moose-
140 - 2023-02-26994Griffins-Ice Hogs-
143 - 2023-03-011021Barracuda-Ice Hogs-
144 - 2023-03-021030Ice Hogs-Rampage-
147 - 2023-03-051052Monsters-Ice Hogs-
148 - 2023-03-061056Ice Hogs-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2023-03-081079Ice Hogs-Gulls-
151 - 2023-03-091085Bruins-Ice Hogs-
155 - 2023-03-131109Ice Hogs-Gulls-
156 - 2023-03-141115Wolves-Ice Hogs-
160 - 2023-03-181143Bruins-Ice Hogs-
161 - 2023-03-191150Ice Hogs-Barracuda-
163 - 2023-03-211164Ice Hogs-Monsters-
165 - 2023-03-231175Aces-Ice Hogs-
167 - 2023-03-251187Ice Hogs-Reign-
169 - 2023-03-271201Ice Hogs-Thunderbirds-
170 - 2023-03-281206Sound Tigers-Ice Hogs-
172 - 2023-03-301218Ice Hogs-Wild-
175 - 2023-04-021235Gulls-Ice Hogs-
176 - 2023-04-031240Ice Hogs-Wheat Kings-
179 - 2023-04-061257Ice Hogs-Wild-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price200100
Attendance35,25217,987
Attendance PCT65.28%66.62%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
15 1972 - 65.73% 409,681$11,061,375$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,257,956$ 1,797,500$ 1,797,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,986$ 1,103,777$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
6,145,208$ 69 11,375$ 784,875$




Ice Hogs Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Ice Hogs Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Ice Hogs Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Ice Hogs Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Ice Hogs Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA