Login

Ice Hogs
GP: 47 | W: 23 | L: 19 | OTL: 5 | P: 51
GF: 169 | GA: 164 | PP%: 21.98% | PK%: 79.68%
GM : Marc Brideau | Morale : 50 | Team Overall : 61
Next Games #728 vs Marlies
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Wild
25-19-4, 54pts
1
FINAL
3 Ice Hogs
23-19-5, 51pts
Team Stats
L2StreakL1
14-10-0Home Record14-7-3
11-9-4Home Record9-12-2
3-4-3Last 10 Games4-5-1
3.25Goals Per Game3.60
2.81Goals Against Per Game3.49
22.40%Power Play Percentage21.98%
79.43%Penalty Kill Percentage79.68%
Ice Hogs
23-19-5, 51pts
4
FINAL
5 Gulls
27-13-8, 62pts
Team Stats
L1StreakW1
14-7-3Home Record14-7-3
9-12-2Home Record13-6-5
4-5-1Last 10 Games6-2-2
3.60Goals Per Game3.23
3.49Goals Against Per Game2.88
21.98%Power Play Percentage26.67%
79.68%Penalty Kill Percentage82.70%
Marlies
28-13-6, 62pts
Day 139
Ice Hogs
23-19-5, 51pts
Team Stats
L1StreakL1
13-8-3Home Record14-7-3
15-5-3Away Record9-12-2
7-3-0Last 10 Games4-5-1
2.87Goals Per Game3.60
2.47Goals Against Per Game3.60
19.07%Power Play Percentage21.98%
85.10%Penalty Kill Percentage79.68%
Ice Hogs
23-19-5, 51pts
Day 142
Wheat Kings
20-27-3, 43pts
Team Stats
L1StreakOTW1
14-7-3Home Record13-9-1
9-12-2Away Record7-18-2
4-5-1Last 10 Games4-5-1
3.60Goals Per Game3.70
3.49Goals Against Per Game3.70
21.98%Power Play Percentage20.65%
79.68%Penalty Kill Percentage78.29%
Ice Hogs
23-19-5, 51pts
Day 144
Reign
23-15-5, 51pts
Team Stats
L1StreakL2
14-7-3Home Record13-7-4
9-12-2Away Record10-8-1
4-5-1Last 10 Games6-3-1
3.60Goals Per Game3.14
3.49Goals Against Per Game3.14
21.98%Power Play Percentage17.37%
79.68%Penalty Kill Percentage78.05%
Team Leaders
Joe VelenoGoals
Joe Veleno
19
Joe HickettsAssists
Joe Hicketts
31
Joe VelenoPoints
Joe Veleno
49
Matt LuffPlus/Minus
Matt Luff
9
Jack LafontaineWins
Jack Lafontaine
22
Adam ScheelSave Percentage
Adam Scheel
0.894

Team Stats
Goals For
169
3.60 GFG
Shots For
1394
29.66 Avg
Power Play Percentage
22.0%
40 GF
Offensive Zone Start
40.3%
Goals Against
164
3.49 GAA
Shots Against
1461
31.09 Avg
Penalty Kill Percentage
79.7%%
38 GA
Defensive Zone Start
39.7%
Team Info

General ManagerMarc Brideau
CoachCory Stillman
DivisionCentral
ConferenceAmerican
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,164
Season Tickets0


Roster Info

Pro Team21
Farm Team20
Contract Limit41 / 250
Prospects32


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Joe Veleno (R)X100.007640847081668460697063725458580506802421,250,000$
2Brett Leason (R)X100.006840886582606958536863675456580506502411,000,000$
3Logan Brown (R)X100.006841866680606358576960667257580506402521,000,000$
4Anton BlidhXX100.00665172606963625853625865546259050620281800,000$
5Jakob Pelletier (R)X100.006055736462656161546361635455540506202221,200,000$
6Lias Andersson (R)X100.005856706464656361676165586859570506202521,000,000$
7Givani Smith (R)X100.00687973598156665653645864545857050610251950,000$
8Jesper FrodenX100.00565769596062616054616064556559050610291750,000$
9Matt LuffX100.005753755868595857546159635460570506002621,000,000$
10Jakub Lauko (R)X100.006160705966616057546059645456540506002321,000,000$
11Scott Reedy (R)X100.00555567586964625855565859545855050590241900,000$
12Georgii Merkulov (R)X100.005258635756646260525760585154510505802321,500,000$
13Connor CarrickX100.00555664626366646040605663546760050610293750,000$
14Ben Gleason (R)X100.00555665606367655940595761546056050600251800,000$
15Joe HickettsX100.00565964625667656140615761546358050600271750,000$
16Brayden Pachal (R)X100.00595362606666645640585563545855050590242800,000$
17Sean Day (R)X100.00555465597066645740585561546056050590262900,000$
18Brian LashoffX100.00555466567064635540555460547464050580331750,000$
Scratches
1Aaron NessX100.00555566585966645740575663547464050600331750,000$
TEAM AVERAGE100.0060547161686464585061596356615705061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Adam Scheel (R)100.0056575672595462566761645854047600241750,000$
2Jack Lafontaine (R)100.0055565669655567565756646055050590261750,000$
Scratches
TEAM AVERAGE100.005657567162556556625964595504960
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Cory Stillman62626262555550CAN492250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joe VelenoIce Hogs (Chi)C47193049-34001221761794912210.61%11110923.6168143813700051465154.17%133100110.8805000322
2Logan BrownIce Hogs (Chi)C47172744-4280100130148409411.49%1395620.3641115221370003990247.80%111500100.9235000021
3Jakob PelletierIce Hogs (Chi)LW47142438-226075711163510112.07%584217.92681428141000023146.77%6200000.9000000211
4Brett LeasonIce Hogs (Chi)RW4717203711205486122408913.93%1094620.1348122713900051584250.00%7800000.7805000621
5Joe HickettsIce Hogs (Chi)D47331343455103595019386.00%51100221.33189221330000123000%000000.6800010101
6Jesper FrodenIce Hogs (Chi)RW47151934-226070551153510013.04%784217.9226826140000002055.17%5800000.8100000212
7Anton BlidhIce Hogs (Chi)LW/RW471021311180724610534809.52%575916.16371024142000052036.07%6100000.8211000111
8Lias AnderssonIce Hogs (Chi)C4713152848044101117326711.11%675316.03000120001910048.75%75700000.7411000120
9Matt LuffIce Hogs (Chi)RW471214269120385188187013.64%767014.28000312000011058.33%3600000.7800000104
10Givani SmithIce Hogs (Chi)LW4711152653315847486277312.79%969914.890111190001260244.26%6100000.7400102121
11Connor CarrickIce Hogs (Chi)D4771825-74401205653162913.21%80112123.863710261420000143010%000000.4500000112
12Ben GleasonIce Hogs (Chi)D4741519-55151043938193910.53%52103922.12347161430000131100%000000.3700001000
13Brayden PachalIce Hogs (Chi)D4751419635572473572514.29%4578916.80213824000057000%000000.4800001000
14Sean DayIce Hogs (Chi)D47611178220693230143720.00%5589819.12549211280000133010%000000.3800000112
15Brian LashoffIce Hogs (Chi)D462101203207323284177.14%4173415.96011310000015000%000000.3300000010
16Jakub LaukoIce Hogs (Chi)LW47841211610212756183014.29%103477.40112490005792147.44%7800000.6900002030
17Scott ReedyIce Hogs (Chi)C4734707512402861410.71%42505.3300001000040044.51%31900000.5600001001
18Aaron NessIce Hogs (Chi)D3011100820130%35919.990000300007000%000000.3300000000
Team Total or Average8011662934591645545124111151394414102811.91%4141382417.2640751152701472000201227201149.85%395600210.66517117201919
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jack LafontaineIce Hogs (Chi)46221740.8903.4225450014513170220.76517452120
2Adam ScheelIce Hogs (Chi)91210.8943.00300001514200000245000
Team Total or Average55231950.8903.372846001601459022174747120


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contrat Signature Date Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Aaron NessIce Hogs (Chi)D335/18/1990No184 Lbs5 ft10NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Adam ScheelIce Hogs (Chi)G245/1/1999Yes185 Lbs6 ft5NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Anton BlidhIce Hogs (Chi)LW/RW283/14/1995No201 Lbs6 ft0NoNoN/ANoNo1Pro & Farm800,000$0$0$No------------------NHL Link
Ben GleasonIce Hogs (Chi)D253/25/1998Yes185 Lbs6 ft1NoNoN/ANoNo1Pro & Farm800,000$0$0$No------------------NHL Link
Brayden PachalIce Hogs (Chi)D248/23/1999Yes200 Lbs6 ft1NoNoN/ANoNo2Pro & Farm800,000$0$0$No800,000$--------No--------NHL Link
Brett LeasonIce Hogs (Chi)RW244/30/1999Yes218 Lbs6 ft5NoNoN/ANoNo1Pro & Farm1,000,000$0$0$No------------------NHL Link
Brian LashoffIce Hogs (Chi)D337/16/1990No219 Lbs6 ft3NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Connor CarrickIce Hogs (Chi)D294/13/1994No192 Lbs5 ft10NoNoN/ANoNo3Pro & Farm750,000$0$0$No750,000$750,000$-------NoNo-------NHL Link
Georgii MerkulovIce Hogs (Chi)LW2310/10/2000Yes181 Lbs5 ft11NoNoN/ANoNo2Pro & Farm1,500,000$0$0$No1,500,000$--------No--------
Givani SmithIce Hogs (Chi)LW252/27/1998Yes204 Lbs6 ft2NoNoN/ANoNo1Pro & Farm950,000$0$0$No------------------NHL Link
Jack LafontaineIce Hogs (Chi)G261/6/1998Yes204 Lbs6 ft2NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Jakob PelletierIce Hogs (Chi)LW223/7/2001Yes170 Lbs5 ft9NoNoN/ANoNo2Pro & Farm1,200,000$0$0$No1,200,000$--------No--------
Jakub LaukoIce Hogs (Chi)LW233/28/2000Yes196 Lbs6 ft0NoNoN/ANoNo2Pro & Farm1,000,000$0$0$No1,000,000$--------No--------
Jesper FrodenIce Hogs (Chi)RW299/21/1994No179 Lbs5 ft11NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Joe HickettsIce Hogs (Chi)D275/4/1996No180 Lbs5 ft8NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------NHL Link
Joe VelenoIce Hogs (Chi)C241/13/2000Yes198 Lbs6 ft1NoNoN/ANoNo2Pro & Farm1,250,000$0$0$No1,250,000$--------No--------NHL Link
Lias AnderssonIce Hogs (Chi)C2510/13/1998Yes204 Lbs6 ft0NoNoN/ANoNo2Pro & Farm1,000,000$0$0$No1,000,000$--------No--------NHL Link
Logan BrownIce Hogs (Chi)C253/5/1998Yes220 Lbs6 ft6NoNoN/ANoNo2Pro & Farm1,000,000$0$0$No1,000,000$--------No--------NHL Link
Matt LuffIce Hogs (Chi)RW265/5/1997No190 Lbs6 ft2NoNoN/ANoNo2Pro & Farm1,000,000$0$0$No1,000,000$--------No--------NHL Link
Scott ReedyIce Hogs (Chi)C244/9/1999Yes205 Lbs6 ft2NoNoN/ANoNo1Pro & Farm900,000$0$0$No------------------NHL Link
Sean DayIce Hogs (Chi)D261/9/1998Yes225 Lbs6 ft3NoNoN/ANoNo2Pro & Farm900,000$0$0$No900,000$--------No--------NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2125.95197 Lbs6 ft11.52921,429$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhJoe VelenoBrett Leason40122
2Jakob PelletierLogan BrownJesper Froden30122
3Givani SmithLias AnderssonMatt Luff20122
4Jakub LaukoScott ReedyJoe Veleno10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor CarrickBen Gleason40122
2Joe HickettsBrian Lashoff30122
3Brayden PachalSean Day20122
4Brayden PachalConnor Carrick10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhJoe VelenoBrett Leason60122
2Jakob PelletierLogan BrownJesper Froden40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor CarrickBen Gleason60122
2Joe HickettsSean Day40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joe VelenoBrett Leason60122
2Logan BrownLias Andersson40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor CarrickBen Gleason60122
2Joe HickettsSean Day40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joe Veleno60122Connor CarrickBen Gleason60122
2Brett Leason40122Joe HickettsSean Day40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joe VelenoBrett Leason60122
2Logan BrownLias Andersson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Connor CarrickBen Gleason60122
2Joe HickettsSean Day40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anton BlidhJoe VelenoBrett LeasonConnor CarrickBen Gleason
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anton BlidhJoe VelenoBrett LeasonConnor CarrickBen Gleason
Extra Forwards
Normal PowerPlayPenalty Kill
Givani Smith, Matt Luff, Jakub LaukoGivani Smith, Matt LuffJakub Lauko
Extra Defensemen
Normal PowerPlayPenalty Kill
Brayden Pachal, Sean Day, Connor CarrickBrayden PachalSean Day, Connor Carrick
Penalty Shots
Joe Veleno, Brett Leason, Logan Brown, Lias Andersson, Anton Blidh
Goalie
#1 : Jack Lafontaine, #2 : Adam Scheel
Custom OT Lines Forwards
Joe Veleno, Brett Leason, Logan Brown, Lias Andersson, Anton Blidh, Jakob Pelletier, Jakob Pelletier, Jesper Froden, Givani Smith, Matt Luff, Jakub Lauko
Custom OT Lines Defensemen
Connor Carrick, Ben Gleason, Joe Hicketts, Sean Day, Brayden Pachal


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces33000000165111100000061522000000104661.000162743006455466804494644722610122299310440.00%110100.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
2Admirals503000201218-6301000209902020000039-640.40012193110645546614344946447226147454611423626.09%21480.95%0797158450.32%776155849.81%39978550.83%10957331132364623307
3Barracuda21000100651110000004221000010023-130.75069150064554667644946447226601518678112.50%9188.89%0797158450.32%776155849.81%39978550.83%10957331132364623307
4Bruins11000000422110000004220000000000021.0004812006455466314494644722622108245240.00%4175.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
5Crunch1010000024-2000000000001010000024-200.0002461064554663344946447226301012377114.29%6183.33%0797158450.32%776155849.81%39978550.83%10957331132364623307
6Devils1000010034-1000000000001000010034-110.500369006455466264494644722643181623200.00%8275.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
7Griffins6310010121201310001011111032100000109180.66721335400645546619144946447226174425314315320.00%19668.42%0797158450.32%776155849.81%39978550.83%10957331132364623307
8Gulls1010000045-1000000000001010000045-100.0004812006455466324494644722625104276350.00%2150.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
9Heat1010000023-1000000000001010000023-100.000235006455466294494644722640629236116.67%5180.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
10Marlies1010000035-21010000035-20000000000000.00036900645546623449464472263461834400.00%8450.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
11Monsters1010000013-21010000013-20000000000000.00012300645546620449464472263032325120.00%110.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
12Moose21100000862110000005231010000034-120.500814220064554666244946447226501820489444.44%8275.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
13Phantoms11000000633000000000001100000063321.0006111700645546634449464472263958225120.00%40100.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
14Rampage20200000610-420200000610-40000000000000.000610160064554666244946447226511316559111.11%6183.33%0797158450.32%776155849.81%39978550.83%10957331132364623307
15Rocket1010000034-1000000000001010000034-100.0003690064554662544946447226177217800.00%000%0797158450.32%776155849.81%39978550.83%10957331132364623307
16Senators1010000057-2000000000001010000057-200.0005101500645546631449464472263914828300.00%4175.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
17Sound Tigers11000000431110000004310000000000021.00047110064554662444946447226441213324125.00%40100.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
18Swamp Rabbits1010000045-11010000045-10000000000000.0004711006455466384494644722630154215120.00%20100.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
19Thunderbirds1010000057-2000000000001010000057-200.00058130064554663244946447226411312275120.00%6266.67%0797158450.32%776155849.81%39978550.83%10957331132364623307
20Wheat Kings43100000181532200000011742110000078-160.7501835530064554661134494644722613539381107114.29%18288.89%0797158450.32%776155849.81%39978550.83%10957331132364623307
21Wild421000101284311000107701100000051460.7501221330064554661044494644722612043378813323.08%16193.75%0797158450.32%776155849.81%39978550.83%10957331132364623307
22Wolfpack11000000422110000004220000000000021.000471100645546626449464472261782344125.00%110.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
23Wolves521010012020021000001880311010001212070.70020325200645546615944946447226172406014219421.05%24675.00%0797158450.32%776155849.81%39978550.83%10957331132364623307
Total471919013321691645241170013287771023812012008287-5510.543169293462206455466139444946447226146141445512411824021.98%1873879.68%0797158450.32%776155849.81%39978550.83%10957331132364623307
_Since Last GM Reset471919013321691645241170013287771023812012008287-5510.543169293462206455466139444946447226146141445512411824021.98%1873879.68%0797158450.32%776155849.81%39978550.83%10957331132364623307
_Vs Conference3715140123212912362086001327165617780110058580420.56812921934810645546610944494644722611393023709761343223.88%1483079.73%0797158450.32%776155849.81%39978550.83%10957331132364623307
_Vs Division21148011327378-512720013241410976010003237-5390.9297312519810645546661344946447226666193209536761621.05%911682.42%0797158450.32%776155849.81%39978550.83%10957331132364623307

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4751L116929346213941461414455124120
All Games
GPWLOTWOTL SOWSOLGFGA
4719191332169164
Home Games
GPWLOTWOTL SOWSOLGFGA
2411701328777
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2381212008287
Last 10 Games
WLOTWOTL SOWSOL
251011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1824021.98%1873879.68%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
449464472266455466
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
797158450.32%776155849.81%39978550.83%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10957331132364623307


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
313Wheat Kings4Ice Hogs6BWBoxScore
736Aces1Ice Hogs6BWBoxScore
1153Ice Hogs2Wolves5ALBoxScore
1364Admirals2Ice Hogs3BWXXBoxScore
1679Ice Hogs0Admirals4ALBoxScore
1893Ice Hogs6Wheat Kings4AWBoxScore
20102Griffins5Ice Hogs4BLXBoxScore
25129Bruins2Ice Hogs4BWBoxScore
28147Ice Hogs6Aces2AWBoxScore
31157Wolves3Ice Hogs4BWBoxScore
33170Ice Hogs5Wild1AWBoxScore
36186Wild4Ice Hogs1BLBoxScore
39201Ice Hogs4Griffins2AWBoxScore
42212Ice Hogs3Moose4ALBoxScore
44220Moose2Ice Hogs5BWBoxScore
49245Admirals3Ice Hogs4BWXXBoxScore
50250Ice Hogs2Barracuda3ALXBoxScore
53268Ice Hogs6Wolves4AWBoxScore
56280Monsters3Ice Hogs1BLBoxScore
62308Griffins3Ice Hogs2BLXXBoxScore
64320Ice Hogs3Admirals5ALBoxScore
66334Rampage4Ice Hogs3BLBoxScore
70353Ice Hogs5Senators7ALBoxScore
74370Wheat Kings3Ice Hogs5BWBoxScore
77393Swamp Rabbits5Ice Hogs4BLBoxScore
79403Ice Hogs2Heat3ALBoxScore
82423Wolfpack2Ice Hogs4BWBoxScore
85441Ice Hogs2Griffins5ALBoxScore
88454Griffins3Ice Hogs5BWBoxScore
93477Ice Hogs3Devils4ALXBoxScore
95487Barracuda2Ice Hogs4BWBoxScore
100512Sound Tigers3Ice Hogs4BWBoxScore
103530Ice Hogs3Rocket4ALBoxScore
105541Ice Hogs6Phantoms3AWBoxScore
106546Marlies5Ice Hogs3BLBoxScore
109563Ice Hogs4Griffins2AWBoxScore
111572Ice Hogs2Crunch4ALBoxScore
112579Wolves5Ice Hogs4BLXXBoxScore
116600Ice Hogs4Wolves3AWXBoxScore
118609Admirals4Ice Hogs2BLBoxScore
121630Ice Hogs4Aces2AWBoxScore
123640Rampage6Ice Hogs3BLBoxScore
126660Ice Hogs5Thunderbirds7ALBoxScore
127669Wild2Ice Hogs3BWXXBoxScore
130683Ice Hogs1Wheat Kings4ALBoxScore
133700Wild1Ice Hogs3BWBoxScore
136709Ice Hogs4Gulls5ALBoxScore
139728Marlies-Ice Hogs-
142748Ice Hogs-Wheat Kings-
144755Ice Hogs-Reign-
145763Phantoms-Ice Hogs-
150790Gulls-Ice Hogs-
Trade Deadline --- Trades can’t be done after this day is simulated!
155815Bruins-Ice Hogs-
158829Ice Hogs-Bears-
160844Devils-Ice Hogs-
163860Ice Hogs-Admirals-
166876Reign-Ice Hogs-
169890Ice Hogs-Monsters-
171897Ice Hogs-Senators-
173910Americans-Ice Hogs-
178936Reign-Ice Hogs-
180947Ice Hogs-Rampage-
183963Ice Hogs-Marlies-
184972Wheat Kings-Ice Hogs-
188997Bruins-Ice Hogs-
1891003Ice Hogs-Barracuda-
1921014Ice Hogs-Aces-
1941028Ice Hogs-Moose-
1951034Heat-Ice Hogs-
2001057Ice Hogs-Moose-
2011064Wolves-Ice Hogs-
2041082Ice Hogs-Monsters-
2061092Falcons-Ice Hogs-
2111118Aces-Ice Hogs-
2151135Ice Hogs-Wild-
2171147Aces-Ice Hogs-
2191155Ice Hogs-Oil Kings-
2211165Ice Hogs-Wild-
2231176Ice Hogs-Gulls-
2241183Moose-Ice Hogs-
2291210Moose-Ice Hogs-
2301211Ice Hogs-Barracuda-
2321229Ice Hogs-Penguins-
2401260Heat-Ice Hogs-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price200100
Attendance35,00516,925
Attendance PCT72.93%70.52%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
18 2164 - 72.13% 500,725$12,017,390$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,232,976$ 1,935,000$ 1,935,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,029$ 1,091,944$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
9,013,042$ 105 9,066$ 951,930$




Ice Hogs Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Ice Hogs Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Ice Hogs Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Ice Hogs Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Ice Hogs Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA