Login

Gulls
GP: 51 | W: 28 | L: 15 | OTL: 8 | P: 64
GF: 158 | GA: 143 | PP%: 18.04% | PK%: 82.05%
GM : Mark Donais | Morale : 50 | Team Overall : 64
Next Games #811 vs Rampage
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Admirals
29-24-2, 60pts
5
FINAL
3 Gulls
28-15-8, 64pts
Team Stats
W2StreakL2
14-10-2Home Record17-6-4
15-14-0Away Record11-9-4
7-2-1Last 10 Games4-5-1
3.56Goals Per Game3.10
3.33Goals Against Per Game2.80
17.96%Power Play Percentage18.04%
77.40%Penalty Kill Percentage82.05%
Admirals
29-24-2, 60pts
4
FINAL
2 Gulls
28-15-8, 64pts
Team Stats
W2StreakL2
14-10-2Home Record17-6-4
15-14-0Away Record11-9-4
7-2-1Last 10 Games4-5-1
3.56Goals Per Game3.10
3.33Goals Against Per Game2.80
17.96%Power Play Percentage18.04%
77.40%Penalty Kill Percentage82.05%
Rampage
33-18-2, 68pts
2023-01-30
Gulls
28-15-8, 64pts
Team Stats
L1StreakL2
16-9-2Home Record17-6-4
17-9-0Away Record11-9-4
6-4-0Last 10 Games4-5-1
3.77Goals Per Game3.10
2.92Goals Against Per Game3.10
20.98%Power Play Percentage18.04%
74.36%Penalty Kill Percentage82.05%
Gulls
28-15-8, 64pts
2023-02-01
Rampage
33-18-2, 68pts
Team Stats
L2StreakL1
17-6-4Home Record16-9-2
11-9-4Away Record17-9-0
4-5-1Last 10 Games6-4-0
3.10Goals Per Game3.77
2.80Goals Against Per Game3.77
18.04%Power Play Percentage20.98%
82.05%Penalty Kill Percentage74.36%
Reign
31-20-2, 64pts
2023-02-03
Gulls
28-15-8, 64pts
Team Stats
OTW1StreakL2
16-9-2Home Record17-6-4
15-11-0Away Record11-9-4
4-5-1Last 10 Games4-5-1
3.36Goals Per Game3.10
3.17Goals Against Per Game3.10
19.53%Power Play Percentage18.04%
78.28%Penalty Kill Percentage82.05%
Team Leaders
Josh LeivoGoals
Josh Leivo
18
Peyton KrebsAssists
Peyton Krebs
32
Peyton KrebsPoints
Peyton Krebs
48
Mark BorowieckiPlus/Minus
Mark Borowiecki
7
David RittichWins
David Rittich
28
Hugo AlnefeltSave Percentage
Hugo Alnefelt
0.914

Team Stats
Goals For
158
3.10 GFG
Shots For
1714
33.61 Avg
Power Play Percentage
18.0%
35 GF
Offensive Zone Start
44.0%
Goals Against
143
2.80 GAA
Shots Against
1538
30.16 Avg
Penalty Kill Percentage
82.1%%
28 GA
Defensive Zone Start
38.5%
Team Info

General ManagerMark Donais
CoachJay Leach
DivisionPacific
ConferenceAmerican
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance1,986
Season Tickets0


Roster Info

Pro Team24
Farm Team19
Contract Limit43 / 250
Prospects49


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Alexander Volkov (R)X100.00723592687680797055666768726763050670251900,000$
2Eric RobinsonXX100.007436936581828663596664736367690506602711,500,000$
3Josh LeivoXX100.006839886679818366636467616669720506602911,500,000$
4Peyton Krebs (R)X100.006139847371859172707164607361630506602221,200,000$
5Lukas Reichel (R)XX100.006136926970828967656663646961620506502021,200,000$
6Morgan Barron (R)XX100.00814089629083806373616465636566050650241700,000$
7Austin PoganskiX100.00723989617778875957605861596668050630261750,000$
8Axel Jonsson-Fjallby (R)X100.00643791657583876158606261676566050630241750,000$
9Pavel Dorofeyev (R)X100.005937816672858364566163626662640506302221,000,000$
10Dominik SimonXXX100.00653487637176826078625859646971050620281750,000$
11Henrik BorgstromX100.005837876183787662776064576265670506202311,000,000$
12Trey Fix-Wolansky (R)X100.00623880646386826364616260636465050620232750,000$
13Sebastian Aho DX100.00623485756986777030736360546566050660261900,000$
14Philippe MyersX100.008034796791867866306859705265670506602611,750,000$
15Madison BoweyX100.00794387668179806430685867506769050650273800,000$
16Mark BorowieckiX100.009084555981837957306155804576730506403311,750,000$
17Jacob MacDonaldX100.006634886476877257307059625169710506402921,100,000$
18Egor Zamula (R)X100.00673891617983856130605866496264050630221700,000$
Scratches
1Riley Tufte (R)X100.007981775896768561545960556164660506302411,200,000$
2Jacob Moverare (R)X100.00723991608582765930625665496466050630241800,000$
3Thomas Harley (R)X100.007238806483798662306358615062640506302121,200,000$
4Victor Soderstrom (R)X100.006237896669867765306460625261630506302121,200,000$
TEAM AVERAGE100.0069418565788282635064616459656705064
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1David Rittich100.00787570857776787776787772840506703011,500,000$
2Hugo Alnefelt (R)100.0065727376646365646365646165050600212900,000$
Scratches
TEAM AVERAGE100.007274728171707271707271677505064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jay Leach69686664656083USA421250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Peyton KrebsGulls (Anh)C511632486120571271384310711.59%5100619.735111631183000003145.99%134600010.9518000313
2Alexander VolkovGulls (Anh)LW5115274251208379191521557.85%7107421.074812351830003792344.23%10400000.7838000142
3Josh LeivoGulls (Anh)LW/RW51182139312081671615811611.18%694218.48851335151000003040.30%6700010.8304000434
4Lukas ReichelGulls (Anh)C/LW51171936210054122175561149.71%10100619.73066271510003647043.02%95300000.7208000150
5Eric RobinsonGulls (Anh)LW/RW51181634626077791624512711.11%13115522.6667133218400071604045.45%9900300.5911000332
6Sebastian Aho DGulls (Anh)D5113132-114052819324621.08%49113522.2606651170000243000.00%000000.5600000021
7Madison BoweyGulls (Anh)D5162531-3295113657219448.33%3999419.513811421670000124000.00%000000.6200100212
8Morgan BarronGulls (Anh)C/LW5191827-324010111611933787.56%781015.903693915100021610148.79%115400000.6711000122
9Jacob BrysonDucksD307132072084359243811.86%4572124.0423531100000070000.00%000000.5500000203
10Dominik SimonGulls (Anh)C/LW/RW51810183315654471194411.27%673014.33000000000101151.38%10900100.4901000001
11Mark BorowieckiGulls (Anh)D4731518797519356366248.33%5794420.1100012000093100.00%000000.3800010121
12Pavel DorofeyevGulls (Anh)LW518917-14021488321539.64%54799.40000000000421243.48%6900000.7102000001
13Jacob MacDonaldGulls (Anh)D5151116122052415614368.93%4989717.5915627164000037100.00%000000.3600000000
14Axel Jonsson-FjallbyGulls (Anh)LW51671332029367010448.57%34599.0100018000020036.84%3800000.5747000021
15Egor ZamulaGulls (Anh)D513710-136088523211159.38%6596018.82000070001104010.00%000000.2100000100
16Trey Fix-WolanskyGulls (Anh)RW50369-10018326712424.48%24128.2500000000000051.52%3300000.4401000000
17Henrik BorgstromGulls (Anh)C50448310021505510277.27%34368.7400015000000149.56%45000000.3711000002
18Philippe MyersGulls (Anh)D84484805191641125.00%1219123.89213822000027100.00%000000.8400000000
19Austin PoganskiGulls (Anh)RW51246314049264511384.44%24528.8700001000000058.62%2900000.2711000010
20Victor SoderstromGulls (Anh)D13123-140178104710.00%1022717.51101544000021100.00%000000.2600000000
21Thomas HarleyGulls (Anh)D51015008231033.33%28817.710000100006000.00%000000.2300000000
22Jacob MoverareGulls (Anh)D1000100100000.00%01212.030000000000000.00%000000.00%00000000
Team Total or Average918155281436483691511931193171447711829.04%3971514016.4935661013661701000181051251046.44%445100420.581243110192625
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1David RittichGulls (Anh)51281580.9112.6130344113214790210.67443510513
2Hugo AlnefeltGulls (Anh)30000.9144.1772005580000.00%0051000
Team Total or Average54281580.9112.653106411371537021435151513


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Alexander VolkovGulls (Anh)LW251997-08-02Yes191 Lbs6 ft1NoNoNo1Pro & Farm900,000$0$0$No
Austin PoganskiGulls (Anh)RW261996-02-16No198 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Axel Jonsson-FjallbyGulls (Anh)LW241998-02-10Yes189 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
David RittichGulls (Anh)G301992-08-19No202 Lbs6 ft3NoNoNo1Pro & Farm1,500,000$0$0$NoNHL Link
Dominik SimonGulls (Anh)C/LW/RW281994-08-08No190 Lbs5 ft11NoNoNo1Pro & Farm750,000$0$0$NoNHL Link
Egor ZamulaGulls (Anh)D222000-03-30Yes176 Lbs6 ft3NoNoNo1Pro & Farm700,000$0$0$NoNHL Link
Eric RobinsonGulls (Anh)LW/RW271995-06-14No200 Lbs6 ft2NoNoNo1Pro & Farm1,500,000$0$0$NoNHL Link
Henrik BorgstromGulls (Anh)C231999-08-06No199 Lbs6 ft3NoNoNo1Pro & Farm1,000,000$0$0$NoNHL Link
Hugo AlnefeltGulls (Anh)G212001-06-04Yes177 Lbs6 ft2NoNoNo2Pro & Farm900,000$0$0$No900,000$NHL Link
Jacob MacDonaldGulls (Anh)D291993-02-26No204 Lbs6 ft0NoNoNo2Pro & Farm1,100,000$0$0$No1,100,000$NHL Link
Jacob MoverareGulls (Anh)D241998-08-31Yes210 Lbs6 ft3NoNoNo1Pro & Farm800,000$0$0$NoNHL Link
Josh LeivoGulls (Anh)LW/RW291993-05-26No210 Lbs6 ft2NoNoNo1Pro & Farm1,500,000$0$0$NoNHL Link
Lukas ReichelGulls (Anh)C/LW202002-05-17Yes170 Lbs6 ft0NoNoNo2Pro & Farm1,200,000$0$0$No1,200,000$NHL Link
Madison BoweyGulls (Anh)D271995-04-22No198 Lbs6 ft2NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$NHL Link
Mark BorowieckiGulls (Anh)D331989-07-12No207 Lbs6 ft1NoNoNo1Pro & Farm1,750,000$0$0$NoNHL Link
Morgan BarronGulls (Anh)C/LW241998-12-02Yes220 Lbs6 ft4NoNoNo1Pro & Farm700,000$0$0$NoNHL Link
Pavel DorofeyevGulls (Anh)LW222000-10-26Yes186 Lbs6 ft1NoNoNo2Pro & Farm1,000,000$0$0$No1,000,000$NHL Link
Peyton KrebsGulls (Anh)C222001-01-26Yes185 Lbs6 ft0NoNoNo2Pro & Farm1,200,000$0$0$No1,200,000$NHL Link
Philippe MyersGulls (Anh)D261997-01-25No210 Lbs6 ft5NoNoNo1Pro & Farm1,750,000$0$0$NoNHL Link
Riley TufteGulls (Anh)LW241998-04-10Yes220 Lbs6 ft6NoNoNo1Pro & Farm1,200,000$0$0$NoNHL Link
Sebastian Aho DGulls (Anh)D261996-02-17No170 Lbs5 ft10NoNoNo1Pro & Farm900,000$0$0$No
Thomas HarleyGulls (Anh)D212001-08-19Yes205 Lbs6 ft3NoNoNo2Pro & Farm1,200,000$0$0$No1,200,000$NHL Link
Trey Fix-WolanskyGulls (Anh)RW231999-03-26Yes186 Lbs5 ft7NoNoNo2Pro & Farm750,000$0$0$No750,000$NHL Link
Victor SoderstromGulls (Anh)D212001-02-26Yes184 Lbs5 ft11NoNoNo2Pro & Farm1,200,000$0$0$No1,200,000$NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2424.88195 Lbs6 ft11.421,075,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander VolkovPeyton KrebsEric Robinson35014
2Dominik SimonLukas ReichelJosh Leivo35014
3Pavel DorofeyevMorgan BarronTrey Fix-Wolansky15014
4Axel Jonsson-FjallbyHenrik BorgstromAustin Poganski15014
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark BorowieckiPhilippe Myers35122
2Sebastian Aho DEgor Zamula35122
3Jacob MacDonaldMadison Bowey25122
4Mark BorowieckiPhilippe Myers5122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander VolkovPeyton KrebsEric Robinson60005
2Lukas ReichelMorgan BarronJosh Leivo40023
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Sebastian Aho DPhilippe Myers60005
2Jacob MacDonaldMadison Bowey40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Morgan BarronEric Robinson60122
2Lukas ReichelAlexander Volkov40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Philippe MyersMark Borowiecki60122
2Madison BoweyEgor Zamula40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Eric Robinson60122Madison BoweyMark Borowiecki60122
2Austin Poganski40122Egor ZamulaJacob MacDonald40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Peyton KrebsEric Robinson60122
2Morgan BarronAlexander Volkov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark BorowieckiPhilippe Myers60122
2Sebastian Aho DJacob MacDonald40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Alexander VolkovPeyton KrebsEric RobinsonSebastian Aho DPhilippe Myers
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexander VolkovMorgan BarronEric RobinsonPhilippe MyersMark Borowiecki
Extra Forwards
Normal PowerPlayPenalty Kill
Peyton Krebs, Pavel Dorofeyev, Trey Fix-WolanskyAxel Jonsson-Fjallby, Henrik BorgstromPavel Dorofeyev
Extra Defensemen
Normal PowerPlayPenalty Kill
Egor Zamula, Philippe Myers, Sebastian Aho DEgor ZamulaPhilippe Myers, Sebastian Aho D
Penalty Shots
Peyton Krebs, Alexander Volkov, Lukas Reichel, Axel Jonsson-Fjallby, Josh Leivo
Goalie
#1 : David Rittich, #2 : Hugo Alnefelt
Custom OT Lines Forwards
Peyton Krebs, Alexander Volkov, Morgan Barron, Eric Robinson, Lukas Reichel, Josh Leivo, Josh Leivo, Trey Fix-Wolansky, Pavel Dorofeyev, Henrik Borgstrom, Dominik Simon
Custom OT Lines Defensemen
Sebastian Aho D, Mark Borowiecki, Philippe Myers, Jacob MacDonald, Madison Bowey


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces11000000321000000000001100000032121.00035800633949163757355555079202832500.00%40100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
2Admirals30200001813-52020000059-41000000134-110.167814221063394916865735555507994222675400.00%9188.89%0898192846.58%812168548.19%35776646.61%12858921166367660338
3Americans11000000312000000000001100000031221.000369006339491642573555550791911630500.00%20100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
4Barracuda53000101201462100000177032000100137680.800203757006339491617257355555079150464013221314.29%18288.89%0898192846.58%812168548.19%35776646.61%12858921166367660338
5Bears11000000211110000002110000000000021.000246006339491637573555550791981220300.00%50100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
6Crunch10001000541100010005410000000000021.000510150063394916385735555507931610255240.00%5260.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
7Devils2010100046-2100010003211010000014-320.5004711006339491669573555550795714844700.00%4250.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
8Falcons10000010651100000106510000000000021.00069150063394916345735555507941910247342.86%50100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
9Griffins1010000012-1000000000001010000012-100.00012300633949162857355555079205219500.00%000.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
10Heat40301000711-41000100021130300000510-520.250712190063394916110573555550791172741959111.11%13376.92%0898192846.58%812168548.19%35776646.61%12858921166367660338
11Marlies311000018621000000134-12110000052330.500816240063394916965735555507910620226715213.33%9366.67%0898192846.58%812168548.19%35776646.61%12858921166367660338
12Monsters5220001017134311000109452110000089-160.600173047006339491617557355555079145352411924520.83%12283.33%0898192846.58%812168548.19%35776646.61%12858921166367660338
13Moose11000000321000000000001100000032121.0003470063394916275735555507928514182150.00%60100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
14Oil Kings11000000404000000000001100000040421.0004610016339491643573555550792192254125.00%10100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
15Penguins22000000954110000005321100000042241.00091625006339491669573555550796321174210220.00%5260.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
16Phantoms11000000321110000003210000000000021.000369006339491630573555550792686313133.33%30100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
17Rampage421000011214-2321000001011-11000000123-150.62512243600633949161285735555507915133226915426.67%100100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
18Reign30200100612-62010010047-31010000025-310.1676111700633949169857355555079892432739333.33%16568.75%0898192846.58%812168548.19%35776646.61%12858921166367660338
19Rocket10001000321000000000001000100032121.0003580063394916465735555507929610195120.00%5180.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
20Senators11000000211110000002110000000000021.0002460063394916285735555507932108213133.33%40100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
21Sound Tigers1000000156-11000000156-10000000000010.500591400633949165757355555079342224400.00%110.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
22Swamp Rabbits11000000642110000006420000000000021.0006915006339491627573555550793815424000.00%20100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
23Thunderbirds10000010211000000000001000001021121.0002130063394916295735555507928111130300.00%20100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
24Wheat Kings22000000853220000008530000000000041.00081523006339491679573555550794913654500.00%20100.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
25Wild11000000523110000005230000000000021.000591400633949163357355555079341610295480.00%4250.00%0898192846.58%812168548.19%35776646.61%12858921166367660338
26Wolfpack1010000023-1000000000001010000023-100.000246006339491628573555550793996166116.67%3166.67%0898192846.58%812168548.19%35776646.61%12858921166367660338
27Wolves2010010046-21010000012-11000010034-110.250461000633949166857355555079581014361000.00%6183.33%0898192846.58%812168548.19%35776646.61%12858921166367660338
Total5121150433515814315271260312391801124990121267634640.6271582814391163394916171457355555079153839737311931943518.04%1562882.05%0898192846.58%812168548.19%35776646.61%12858921166367660338
_Since Last GM Reset5121150433515814315271260312391801124990121267634640.6271582814391163394916171457355555079153839737311931943518.04%1562882.05%0898192846.58%812168548.19%35776646.61%12858921166367660338
_Vs Conference351313013141021020187601112545221767002024850-2370.529102185287106339491611375735555507910612582618181292317.83%1091982.57%0898192846.58%812168548.19%35776646.61%12858921166367660338
_Vs Division15890121343412543011121315-210460010130264250.833437511801633949164875735555507942511313737550918.00%581082.76%0898192846.58%812168548.19%35776646.61%12858921166367660338

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5164L215828143917141538397373119311
All Games
GPWLOTWOTL SOWSOLGFGA
5121154335158143
Home Games
GPWLOTWOTL SOWSOLGFGA
2712631239180
Visitor Games
GPWLOTWOTL SOWSOLGFGA
249912126763
Last 10 Games
WLOTWOTL SOWSOL
351100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1943518.04%1562882.05%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
5735555507963394916
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
898192846.58%812168548.19%35776646.61%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12858921166367660338


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-101Rampage2Gulls4BWBoxScore
4 - 2022-10-1328Gulls6Monsters3AWBoxScore
6 - 2022-10-1542Gulls2Reign5ALBoxScore
7 - 2022-10-1649Barracuda4Gulls3BLXXBoxScore
9 - 2022-10-1868Rampage7Gulls2BLBoxScore
12 - 2022-10-2183Gulls2Heat3ALBoxScore
14 - 2022-10-23100Reign2Gulls0BLBoxScore
15 - 2022-10-24104Gulls5Marlies1AWBoxScore
17 - 2022-10-26129Marlies4Gulls3BLXXBoxScore
20 - 2022-10-29149Gulls3Barracuda4ALXBoxScore
21 - 2022-10-30157Monsters1Gulls0BLBoxScore
23 - 2022-11-01169Gulls4Barracuda2AWBoxScore
26 - 2022-11-04189Heat1Gulls2BWXBoxScore
28 - 2022-11-06204Gulls2Rampage3ALXXBoxScore
29 - 2022-11-07218Gulls2Heat4ALBoxScore
31 - 2022-11-09231Barracuda3Gulls4BWBoxScore
34 - 2022-11-12249Wheat Kings1Gulls3BWBoxScore
35 - 2022-11-13260Gulls6Barracuda1AWBoxScore
37 - 2022-11-15276Gulls3Americans1AWBoxScore
39 - 2022-11-17289Gulls1Griffins2ALBoxScore
40 - 2022-11-18297Swamp Rabbits4Gulls6BWBoxScore
43 - 2022-11-21319Wheat Kings4Gulls5BWBoxScore
45 - 2022-11-23338Crunch4Gulls5BWXBoxScore
48 - 2022-11-26357Gulls4Oil Kings0AWBoxScore
49 - 2022-11-27364Gulls2Thunderbirds1AWXXBoxScore
51 - 2022-11-29379Gulls2Monsters6ALBoxScore
53 - 2022-12-01389Bears1Gulls2BWBoxScore
56 - 2022-12-04412Penguins3Gulls5BWBoxScore
58 - 2022-12-06426Falcons5Gulls6BWXXBoxScore
60 - 2022-12-08444Gulls0Marlies1ALBoxScore
62 - 2022-12-10456Gulls3Admirals4ALXXBoxScore
64 - 2022-12-12470Devils2Gulls3BWXBoxScore
66 - 2022-12-14480Gulls3Wolves4ALXBoxScore
68 - 2022-12-16495Monsters2Gulls3BWXXBoxScore
72 - 2022-12-20522Phantoms2Gulls3BWBoxScore
76 - 2022-12-24544Gulls3Aces2AWBoxScore
77 - 2022-12-25557Sound Tigers6Gulls5BLXXBoxScore
80 - 2022-12-28577Rampage2Gulls4BWBoxScore
84 - 2023-01-01602Senators1Gulls2BWBoxScore
86 - 2023-01-03623Gulls1Devils4ALBoxScore
88 - 2023-01-05631Monsters1Gulls6BWBoxScore
90 - 2023-01-07647Gulls2Wolfpack3ALBoxScore
92 - 2023-01-09659Gulls1Heat3ALBoxScore
94 - 2023-01-11669Reign5Gulls4BLXBoxScore
96 - 2023-01-13684Gulls3Moose2AWBoxScore
98 - 2023-01-15699Wild2Gulls5BWBoxScore
101 - 2023-01-18723Wolves2Gulls1BLBoxScore
103 - 2023-01-20736Gulls3Rocket2AWXBoxScore
105 - 2023-01-22750Gulls4Penguins2AWBoxScore
106 - 2023-01-23759Admirals5Gulls3BLBoxScore
109 - 2023-01-26782Admirals4Gulls2BLBoxScore
113 - 2023-01-30811Rampage-Gulls-
115 - 2023-02-01824Gulls-Rampage-
117 - 2023-02-03840Reign-Gulls-
120 - 2023-02-06859Gulls-Bruins-
121 - 2023-02-07869Marlies-Gulls-
126 - 2023-02-12900Aces-Gulls-
129 - 2023-02-15920Gulls-Monsters-
130 - 2023-02-16931Griffins-Gulls-
134 - 2023-02-20960Barracuda-Gulls-
135 - 2023-02-21966Gulls-Barracuda-
138 - 2023-02-24979Gulls-Rampage-
139 - 2023-02-25991Marlies-Gulls-
141 - 2023-02-271005Gulls-Wheat Kings-
143 - 2023-03-011019Gulls-Moose-
144 - 2023-03-021026Heat-Gulls-
147 - 2023-03-051051Barracuda-Gulls-
Trade Deadline --- Trades can’t be done after this day is simulated!
149 - 2023-03-071068Gulls-Marlies-
150 - 2023-03-081079Ice Hogs-Gulls-
155 - 2023-03-131109Ice Hogs-Gulls-
157 - 2023-03-151123Gulls-Phantoms-
158 - 2023-03-161134Gulls-Wild-
160 - 2023-03-181141Wolves-Gulls-
162 - 2023-03-201156Gulls-Wild-
165 - 2023-03-231171Moose-Gulls-
166 - 2023-03-241179Gulls-Sound Tigers-
167 - 2023-03-251185Gulls-Aces-
169 - 2023-03-271202Heat-Gulls-
170 - 2023-03-281203Gulls-Crunch-
171 - 2023-03-291215Gulls-Reign-
174 - 2023-04-011231Gulls-Crunch-
175 - 2023-04-021235Gulls-Ice Hogs-
176 - 2023-04-031239Griffins-Gulls-
179 - 2023-04-061260Gulls-Reign-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price200100
Attendance35,57018,041
Attendance PCT65.87%66.82%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
15 1986 - 66.19% 412,875$11,147,625$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,063,089$ 4,155,000$ 4,175,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
23,083$ 1,908,910$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
6,193,125$ 69 24,472$ 1,688,568$




Gulls Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Gulls Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Gulls Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Gulls Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Gulls Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA